
Cache Persistence Analysis

for

Embedded Real-Time Systems

Dissertation

Zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

von
Christoph Cullmann

Saarbrücken
Februar 2013

Dekan Prof. Dr. Mark Groves

Prüfungsausschuss

Vorsitzender Prof. Dr. Sebastian Hack
Berichterstatter Prof. Dr. Dr. h.c. mult. Reinhard Wilhelm

Prof. Dr. Jian-Jia Chen
Akademischer Beisitzer Dr. Michael Feld

Tag des Kolloquiums 14.02.2013

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.
Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind
unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im
In- noch im Ausland in gleicher oder ähnlicher Form in einem Verfahren zur
Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, February 25, 2013

i

Zusammenfassung

Um eine obere Schranke für die Laufzeit eines Programms (WCET) auf einem
sicherheitskritischen harten Echtzeit-System zu berechnen, müssen die Effekte der
Architektur der zugrunde liegenden Hardware modelliert werden. Die klassische
Cache-Analyse unterscheidet drei Kategorien für Speicherreferenzen: always-hit,
always-miss und not-classified. Die Cache-Persistenz-Analyse versucht, die klassi-
sche Cache-Analyse zu verbessern, in dem sie not-classified Speicherreferenzen
als persistent klassifiziert und damit die Zahl der möglichen Cache-Fehlzugriffe
beschränkt.

Wir stellen mehrere neuartige auf abstrakter Interpretation basierende Cache-
Persistenz-Analysen vor. Zwei basieren auf dem Konzept des Zählens von Kon-
flikten, eine auf der May-Cache Analyse und die letzte kombiniert beide Ansätze
miteinander. Alle Analysen korrigieren auch einen Fehler in der ursprünglichen
Cache-Persistenz-Analyse von Ferdinand und Wilhelm.

Für non-fully-timing-compositional Architekturen ist die Persistenz nicht einfach zu
benutzen. Eine neue Pfadanalyse erlaubt die Benutzung der Persistenz auch für
aktuelle Architekturen, bei denen sowohl Timing-Anomalien als auch Domino-
Effekte auftreten können.

Die vorgestellten Analysen werden innerhalb des industriell verwendeten WCET-
Analysators aiT auf einer Reihe von Standard-Benchmark-Programmen und realen
Avionic-Anwendungen evaluiert.

iii

Abstract

To compute a worst-case execution time (WCET) estimate for a program running
on a safety-critical hard real-time system, the effects of the architecture of the un-
derlying hardware have to be modeled. The classical cache analysis distinguishes
three categories for memory references to cached memory: always-hit, always-miss
and not-classified. The cache persistence analysis tries to classify memory references
as persistent thereby improving the classical cache analysis by limiting the number
of misses for not-classified memory references.

We present several new abstract interpretation based cache persistence analyses.
Two are based on the concept of conflict counting, one on the may cache analysis,
and one combines both concepts. All analyses also fix a correctness issue of the
original cache persistence analysis by Ferdinand and Wilhelm.

For non-fully-timing-compositional architectures using the persistence information
is not straightforward. A novel path analysis enables the use of persistence
information also for state-of-the-art architectures that exhibit timing anomalies /
domino effects.

The new analyses are practically evaluated within the industrially used WCET
analyzer aiT on a series of standard benchmark programs and a series of real
avionic examples.

v

Extended Abstract

Embedded systems are widely used in the domains of avionics, automotive or
space systems. Some are safety-critical. Beside functional requirements some
also have to fulfill strict timing constraints. To compute a worst-case execution
time (WCET) estimate for a program running on such systems, the effects of the
hardware architecture have to be modeled. To obtain tight bounds for modern
processors, cache and pipeline analyses are needed. The classical must and may
cache analyses [Fer97] distinguish three categories for memory references to
cached memory: always-hit, always-miss and not-classified. The cache persistence
analysis tries to classify memory references as persistent thereby improving the
classical cache analysis by limiting the number of misses for not-classified memory
references.

We present a correctness issue with the abstract interpretation based cache per-
sistence analysis by Ferdinand and Wilhelm and propose several new abstract
interpretation based persistence analyses that fix this issue. Two are based on the
concept of conflict counting (per cache set or per element), one on the may cache
analysis, and one combines both concepts.

For non-fully timing compositional architectures [WGR+09] the persistence informa-
tion is not straightforward to use. Typical state-of-the-art architectures exhibit
both timing anomalies and domino effects. Such architectures do not allow to
quantify the costs of a single cache hit or miss in isolation. Our novel path analysis
enables the use of persistence information also for state-of-the-art architectures.

The new analyses are practically evaluated within the industrially used WCET
analyzer aiT on a series of standard benchmark programs and a series of real
avionic examples.

vii

Acknowledgements

I want to thank Prof. Dr. Reinhard Wilhelm for the inspiration to work and
research in the WCET analysis field and the fruitful discussions about the topic of
this thesis.

I am grateful that AbsInt provided me with the framework I used to implement
and evaluate the cache persistence analyses and let me use my time to design the
individual analyses during my day-to-day work.

I also want to thank Prof. Dr. Jian-Jia Chen for reviewing this thesis.

Especially the feedback and discussions with Christian Ferdinand, Gernot Geb-
hard, Florian Martin, Reinhold Heckmann, Markus Pister, Marc Schlickling, Jan
Reineke, Daniel Grund, Barbara Dörr and other colleagues at both AbsInt and the
compiler construction chair made this thesis feasible at all. Many thanks for this,
without this help, this thesis would not have been possible.

Last but not least, I thank my family and friends for their support.

ix

Contents

Eidesstattliche Versicherung i

Zusammenfassung iii

Abstract v

Extended Abstract vii

Acknowledgements ix

1 Introduction 1

1.1 Motivation . 1
1.2 Thesis Structure & Contributions 2

2 Abstract Interpretation 5

2.1 Concrete Semantics . 5
2.1.1 Program Representation 5
2.1.2 Program Semantics . 6

2.2 Abstract Semantics . 8
2.2.1 Definition of Abstraction 8
2.2.2 Soundness . 9

2.3 Analysis Framework . 10
2.4 Summary . 11

3 Cache Memories & Cache Analysis 13

3.1 Why Use Caches? . 13
3.2 Cache Memory Parameters . 14
3.3 Concrete Semantics . 16

3.3.1 Program Representation 16
3.3.2 Cache Semantics . 16

3.4 Abstract Semantics . 19
3.5 Must & May Cache Analyses . 20

3.5.1 Must Cache Analysis . 21

xi

Contents

3.5.2 May Cache Analysis . 23
3.6 Summary . 24

4 Cache Persistence Analysis 25

4.1 Motivation . 25
4.2 Cache Persistence . 27
4.3 Application to Real-World Software 32

4.3.1 Input Handling - Interface to the Physical World 32
4.3.2 Message Handling - Inter-System Communication . . . 33
4.3.3 Error Handling - Catching Runtime Errors 33
4.3.4 Data Dependent Algorithms - State Machine Code . . . 34

4.4 Summary . 35

5 Cache Persistence Analysis by Ferdinand 37

5.1 Introduction of the Analysis . 37
5.2 Application to an Example . 37
5.3 Persistence Analysis Bug . 39

5.3.1 Counter-Example . 39
5.3.2 Evaluation . 41

5.4 Summary . 41

6 Set-Wise Conflict Counting Persistence Analysis 43

6.1 Introduction of the Analysis . 43
6.2 Application to the Examples . 44

6.2.1 if-then-else Loop . 44
6.2.2 switch Loop . 45

6.3 Discussion of Analysis Properties 45
6.3.1 Soundness . 45
6.3.2 Termination . 46

6.4 Analysis Space-Optimization . 47
6.5 Imprecision Scenarios . 47

6.5.1 Imprecision for unrolled loops 48
6.5.2 Imprecision for inner-iteration persistence 49
6.5.3 Proposed improvements 50

6.6 Benchmarking . 51
6.6.1 Benchmark Scenarios . 51
6.6.2 Benchmark Results . 53

6.7 Summary . 54

xii

Contents

7 Element-Wise Conflict Counting Persistence Analysis 55

7.1 Introduction of the Analysis . 55
7.2 Application to the Examples . 57

7.2.1 if-then-else Loop . 57
7.2.2 switch Loop . 57

7.3 Discussion of Analysis Properties 59
7.3.1 Soundness . 59
7.3.2 Termination . 60

7.4 Analysis Space-Optimization . 60
7.5 Precision Improvements . 61

7.5.1 Precision for unrolled loops 61
7.5.2 Precision for inner-iteration persistence 61

7.6 Benchmarking . 62
7.7 Summary . 64

8 May Analysis Based Cache Persistence Analysis 67

8.1 Introduction of the Analysis . 67
8.2 Application to the Examples . 69

8.2.1 if-then-else Loop . 69
8.2.2 switch Loop . 69

8.3 Discussion of Analysis Properties 70
8.3.1 Soundness . 70
8.3.2 Termination . 73

8.4 Precision Improvements . 73
8.4.1 Precision for unrolled loops 73
8.4.2 Precision for inner-iteration persistence 73

8.5 Benchmarking . 74
8.6 Summary . 76

9 Age-Tracking Conflict Counting Persistence Analysis 79

9.1 Introduction of the Analysis . 79
9.2 Application to the Examples . 81

9.2.1 if-then-else Loop . 81
9.2.2 switch Loop . 81

9.3 Discussion of Analysis Properties 83
9.3.1 Soundness . 83
9.3.2 Termination . 85

9.4 Analysis Space-Optimization . 85
9.5 Precision Improvements . 85

9.5.1 Precision for unrolled loops 86

xiii

Contents

9.5.2 Precision for inner-iteration persistence 87
9.6 Benchmarking . 87
9.7 Summary . 88

10 Practical Evaluation 91

10.1 The aiT WCET Analyzer Framework 91
10.1.1 Control-flow Reconstruction 91
10.1.2 Loop & Value Analysis 92
10.1.3 Cache & Pipeline Analysis 93
10.1.4 Path Analysis . 93
10.1.5 Relevant Parts for Persistence Analysis 93

10.2 Cache & Pipeline Analysis . 93
10.3 Path Analysis . 95
10.4 Selection of Architectures . 96

10.4.1 Classification of Architectures 96
10.4.2 Relevance in Practice . 97

10.5 Test Selection & Hardware Setup 98
10.5.1 ARM7 TDMI Tests . 98
10.5.2 Freescale MPC5554 Tests 98
10.5.3 Freescale MPC755 Tests 98

10.6 Test Setup . 99
10.7 Test Results . 99
10.8 Discussion of the Results . 100

10.8.1 ARM7 TDMI - Synthetic and WCET Benchmarks 100
10.8.2 Freescale MPC5554 & MPC755 - Avionics Benchmarks 101

10.9 Summary . 102

11 Related Work 113

11.1 Other Cache Persistence Analyses 113
11.1.1 First-Miss Analysis by Mueller 113
11.1.2 Persistence Analysis by Huynh et al. 114
11.1.3 Persistence Analysis by Kartik Nagar 114

11.2 Application of Cache Persistence Analyses 114
11.2.1 Persistence Scope Optimizations 115
11.2.2 Application to Muli-Level Caches 115
11.2.3 Application to Multi-Core Architectures 115

12 Extensions & Future Work 117

12.1 Using Must & May Analyses Information 117
12.1.1 Useful Must Cache Analysis Information 117

xiv

Contents

12.1.2 Useful May Cache Analysis Information 119
12.2 Better Handling of Replacement Policies 119

12.2.1 Exploiting Relations between Non-LRU and LRU Policies 120
12.2.2 Cumulative Arguments for Non-LRU Policies 120

12.3 Enhanced Persistence Scope Selection 121
12.4 Write-Back Cache Analysis . 122

13 Conclusion 123

A Source Code 125

A.1 Synthetic Benchmarking . 125
A.2 Evaluation Examples . 140

List of Theorems 145

List of Figures 149

List of Tables 155

Bibliography 157

Index 165

xv

CHAPTER1
Introduction

1.1 Motivation

In our modern world, embedded systems become more and more wide-spread.
They are also used for safety-critical tasks, like fly-by-wire or airbag controllers.
In this safety-critical realm, both functional and timing correctness are required,
to ensure correct behavior.

Scheduling analysis is used to ensure the timing constraints of the system are
fulfilled. A crucial input for this analysis is the WCET (worst case execution time)
for all tasks of the system.

During the last decades, static analysis techniques have been designed to compute
safe and tight upper bounds of the WCET. On this field of WCET analysis especially
analyses based on abstract interpretation are able to cope with current state-of-the-
art hard- and software combinations. There exist tools based on this technology
that are successfully used in the certification and verification of avionics software
([SLH+05]).

Modern hardware architectures feature complex pipelines with many performance
features to increase the average case performance. One of the main performance
limiting factors is the typically rather slow main memory. Therefore, caches are
used to hide long memory access latencies. For computing precise WCET estimates
of applications running on such architectures, the cache behavior must therefore
be included into the analysis. The precision of the cache analysis has a major
impact on the precision of the overall computed WCET bound.

A widely-used method is to assign each cache access a category that describes its
cache behavior. Common categories are always-miss, always-hit and not-classified.
A typical approach to calculate these categories for the cache accesses is to do

1

1 Introduction

either a standalone cache analysis or a combined cache and pipeline analysis based
on abstract interpretation [FMWA96]. Analyses computing the always-hit and
always-miss classifications are, for example, must and may analysis as introduced
in [Fer97].

Especially for data-dependent programs not all accesses to the cache can be classi-
fied as always-hit or always-miss. Not-classified cases can lead to overestimations.
The computed worst-case path might therefore consider more misses than actually
possible for any real execution of the program.

An additional cache analysis, introduced as cache persistence analysis by Christian
Ferdinand [Fer97], tries to limit the number of misses the analysis has to assume
for such accesses. The persistence analysis classifies formerly not-classified ac-
cesses as persistent if the accessed element will still be in the cache in case it was
loaded at a former point in time. Thus at most one miss can occur for accesses to
this element in any access sequence. This classification is also known as first-miss,
introduced by Frank Mueller [MWH94].

In this thesis we will show a correctness issue with the analysis by Ferdinand. We
will then introduce several novel persistence analyses to overcome this issue. We
will compare their precision and how they relate to other approaches. Then we
will evaluate them inside a state-of-the-art static timing analysis framework on
real-world applications.

1.2 Thesis Structure & Contributions

In this thesis we first introduce in Chapter 2 the theoretical background of abstract
interpretation as used by the later proposed cache analyses.

In Chapter 3 we motivate why cache memories are used in current embedded
systems and briefly introduce the concepts of cache analysis, including the well
known must and may cache analyses.

In Chapter 4 we present the basic concepts and definitions of the cache persistence
analysis and why it is interesting for real-world applications. We will highlight
the different code structures that make cache persistence analysis interesting for
the typical real-time software.

In Chapter 5 the existing persistence analysis designed by Christian Ferdinand is
briefly described and applied to a simple example for better understanding of the
basic ideas. Then a correctness problem of this analysis is shown in detail.

2

1.2 Thesis Structure & Contributions

Then we present the main contributions of this thesis: several novel persistence
analyses that overcome the problem and how they are integrated and evaluated
inside the WCET analyzer aiT.

In Chapter 6 we introduce a novel persistence analysis based on counting the
conflicting elements inside one cache set. We show its soundness and how it per-
forms on our running examples and the problematic example for the persistence
analysis by Ferdinand. A benchmarking framework is introduced to evaluate the
precision of the analysis.

In Chapter 7 we improve the conflict counting by not only looking at conflicts per
set but conflicts per element inside a set. We will show how this improves the
precision for our examples and benchmarks.

In Chapter 8 we sketch a third novel persistence analysis, based on the may cache
analysis. We compare it briefly with both conflict based analyses.

In Chapter 9 we design an analysis combining the concepts of all analyses intro-
duced before. This is again evaluated in our benchmarking framework.

All novel persistence analyses will be evaluated in Chapter 10. The integration
of the persistence analyses into the WCET analyzer aiT is presented with special
account for architectures with timing anomalies. An evaluation demonstrates the
applicability of our novel analyses to real industrial examples and architectures.

In Chapter 11 we discuss other state-of-the-art work.

Chapter 12 contains further extensions to the persistence analyses and an outlook
to possible future work.

Chapter 13 concludes this thesis.

3

CHAPTER2
Abstract Interpretation

The cache analyses presented in this thesis aim to determine properties about
memory accesses inside a program: will an access be a cache hit or miss and how
many misses can occur overall? Such properties are in general not decidable on
the concrete semantics of a program.

A solution for this problem is to use an approximation of the concrete seman-
tics for the computation, trading computability against precision. Given the
approximation is sound, the results will hold for the concrete semantics, too.

P. Cousot & R. Cousot introduced in [CC76, CC77] abstract interpretation as a
theoretical framework to compute such properties based on sound abstract seman-
tics.

First we introduce the program representation and concrete semantics in Sec-
tion 2.1. In Section 2.2 we briefly describe the abstract semantics. Finally we
introduce the analysis framework we use to formulate our abstract interpreta-
tion based cache analyses in Section 2.3. We focus on the parts of this theory
which we need for the later presented cache analyses. For more details see
[CC76, CC77, Rei08, KU77, AM95a].

2.1 Concrete Semantics

2.1.1 Program Representation

In the following we represent a program as a control-flow graph and an execution
as a path.

5

2 Abstract Interpretation

Definition 2.1 (Control-flow graph)
A control-flow graph G = (V ,E, i) is the representation of a program, where

• each node v ∈ V represents one program statement

• each edge e ∈ E ⊆ V ×V represents a possible control-flow transition

• i ∈ V is the unique start node

Definition 2.2 (Path)
A sequence (v1, ...,vn) ∈ V ∗ is a path π through the control-flow graph G = (V ,E, i) iff
π is empty or

• v1 = i

• ∀k ∈ {1, ...,n− 1} : (vk ,vk+1) ∈ E

Definition 2.3 (Path to a node v)
A path π = (v1, ...,vn) ∈ V ∗ through the control-flow graph G = (V ,E, i) is a path to
v ∈ V iff (vn,v) ∈ E.

2.1.2 Program Semantics

Be the concrete semantics of the program statements over a concrete domain Dconc
given by a function f : V →Dconc→Dconc.

Based on this concrete transformer (or concrete update function) f we can formulate
the path semantics for a program.

Definition 2.4 (Path semantics)
The path semantics of a path π = (v1, ...,vn) through the control-flow graph G =
(V ,E, i) for a given concrete transformer f : V →Dconc→Dconc is defined as:

[[π]]conc :=

id if π is the empty path

f (vn) ◦ [[(v1, ...,v(n−1))]]conc otherwise

To be able to consider not only one individual start state but a set of possible start
states for a program, we lift the concrete semantics to a collecting semantics.

6

2.1 Concrete Semantics

Given a concrete transformer f working on single states in Dconc we construct a
collecting transformer fcoll : V →Dcoll →Dcoll working on sets of statesDcoll = 2Dconc

as follows:
∀v ∈ V : ∀S ∈Dcoll : fcoll(v)(S) := {f (v)(s) | s ∈ S}

(Dcoll ,⊆,
⋃
,
⋂
,∅,Dconc) is a complete lattice. The partial order ⊆ orders states by

their precision. If a state a is more precise than b, it contains a subset of the states
of b.

The collecting transformer allows us the definition of the collecting path seman-
tics.

Definition 2.5 (Collecting path semantics)
The collecting path semantics of a path π = (v1, ...,vn) through the control-flow graph
G = (V ,E, i) for a given collecting transformer fcoll : V →Dcoll →Dcoll is defined as:

[[π]]coll :=

id if π is the empty path

fcoll(vn) ◦ [[(v1, ...,v(n−1))]]coll otherwise

For cache analyses we are interested in the properties of the memory accesses
for individual control-flow graph locations. Therefore we define the sticky collect-
ing semantics that maps the program points to possible concrete states for that
location.

Definition 2.6 (Sticky collecting semantics)
The sticky collecting semantics Coll : V →Dcoll of a control-flow graph G = (V ,E, i)
for a set of initial states Init ∈ Dcoll is defined as

Coll(v) :=
⋃
{[[π]]coll(Init) | π is a path to v}

The sticky collecting semantics is in general not computable, as:

• The set of initial states Init is often too large or possibly infinite.

• The definition uses the union over all possible path to any program point.
This may result in infinitely many paths to follow because of loops or recur-
sions in the program.

7

2 Abstract Interpretation

2.2 Abstract Semantics

2.2.1 Definition of Abstraction

We now apply the principles of abstract interpretation and transfer our problem
from sets of concrete states Dcoll to an abstract domain Dabs = (Dabs,⊆).

The basic idea is that states inside this abstract domain will represent possibly
multiple concrete states and allow us therefore to compute on many states in
parallel. Whereas this can lead to a loss of precision, it allows us to make the
problems we are interested in computable.

The meaning of an element in the abstract domain is defined by a monotone
concretization function conc :Dabs→Dcoll . The relation of a set of concrete elements
to the abstract domain is defined by an abstraction function abs :Dcoll →Dabs.

Like in the concrete setting of the collecting semantics, the partial order ⊆ on
Dabs can be used as an order by precision. If a ⊆ b, a will comprise more precise
information than b, as a will be the abstraction of fewer concrete states than b.

Instead of the collecting transformer, we now use a monotone abstract transformer
fabs : V →Dabs→Dabs that works directly on the abstract domain to express the
semantics of the program.

This leads to the definition of the abstract collecting path semantics and abstract
sticky collecting semantics as follows:

Definition 2.7 (Abstract collecting path semantics)
The abstract collecting path semantics of a path π = (v1, ...,vn) through the control-
flow graph G = (V ,E, i) for a given abstract transformer fabs : V → Dabs → Dabs is
defined as:

[[π]]abs :=

id if π is the empty path

fabs(vn) ◦ [[(v1, ...,v(n−1))]]abs otherwise

Definition 2.8 (Abstract sticky collecting semantics)
The abstract sticky collecting semantics Abs : V → Dabs of a control-flow graph
G = (V ,E, i) for an abstract initial state Initabs ∈ Dabs and an abstract transformer
fabs : V →Dabs→Dabs is defined as

Abs(v) :=
⊔
{[[π]]abs(Initabs) | π is a path to v}

8

2.2 Abstract Semantics

Compared with the concrete sticky collecting semantics, this definition has no
issue with a potentially infinite large initial state space. Still the union over all
paths may not be computable in practice. Because of this (possibly infinite) union,
it is also known as the meet over all paths solution (MOP).

2.2.2 Soundness

To argue over the soundness of the previously defined abstract semantics, we need
the concepts of local consistency and strongly adjoint functions.

Definition 2.9 (Local consistency)
fcoll and fabs are locally consistent, iff

∀s ∈ Dcoll : fcoll(s) ⊆ conc(fabs(abs(s)))

Definition 2.10 (Strongly adjoint)
conc and abs are strongly adjoint, iff

∀s ∈ Dcoll : s ⊆ conc(abs(s))
∀s ∈ Dabs : s = abs(conc(s))

Given these definitions, the soundness of the abstraction for the sticky collecting
semantics follows from ([CC77]):

Theorem 2.1 (Soundness of abstract sticky collecting semantics)
If an abstract interpretation (see Figure 2.1) satisfies:

• (Dcoll ,⊆,
⋃
,⊥coll) and (Dabs,⊆,

⋃
,⊥abs) are complete join semi lattices,

• abs and conc are monotone and strongly adjoint,

• the abstract transformer fabs is locally consistent with the concrete transformer
fcoll

then Coll ⊆ conc(Abs), i.e. the abstraction of the sticky collecting semantics is sound.

9

2 Abstract Interpretation

sabs

s

fabs(sabs)

fcoll(sabs)

⊆

fabs

fcoll

abs
conc

Figure 2.1: Abstract Interpretation

2.3 Analysis Framework

In the scope of this thesis, we use the program analyzer generator (PAG) to specify
our cache analyses [AM95b]. This framework allows to ignore the implementation
details of the analysis and focus on the essential parts needed for the abstract
interpretation:

• the abstract domain

• the abstract transformer

• the abstract join function

Given these elements, PAG will generate an analyzer that computes an approx-
imation of the abstract sticky collecting semantics. This solution is known as
the maximal fixed point solution (MFP). Such an approximation is necessary, as
the MOP solution of the abstract sticky collecting semantics is in general not
computable.

Definition 2.11 (MFP, maximal fixed point solution)
The maximal fixed point solution MFP : V → Dabs of a control-flow graph G =
(V ,E, i) for an abstract initial state Initabs ∈ Dabs and an abstract transformer fabs :
V → Dabs → Dabs is the least fixed point of the functional F : (V → Dabs)→ (V →
Dabs)

F(f)(v) :=

Initabs if v = i

⊔
{fabs(w)(f (w)) | (w,v) ∈ E} otherwise

10

2.4 Summary

The correctness of the MFP has been shown in [AM95a, KU77].

In addition, PAG provides the VIVU [MAWF98] (virtual inlining & virtual unrolling)
extension to the well-known callstring-approach [SP81] for interprocedural data-
flow analysis. Loops inside the control-flow are transformed to tail-recursive
routines and the first k iterations of a loop can be distinguished from any further
iteration.

2.4 Summary

In this chapter we introduced the theoretical foundation and the analysis frame-
work for the later described cache analysis based on abstract interpretation. In the
next chapter we will now introduce the concept of cache analysis and then focus
on the persistence analysis.

11

CHAPTER3
Cache Memories & Cache Analysis

In this chapter we show why caches are important today and introduce basic
notions of cache analysis. For a more complete overview of cache memories and
analysis refer to [Fer97, Rei08].

3.1 Why Use Caches?

There are today techniques to build efficient and cheap fast processors in the
multi-gigahertz area, but we can’t afford to do the same for their main memories.
The gap between processor and memory speed is ever increasing, as shown in
Figure 3.1 [MV99].

Therefore caches are used to hide the long access latencies of the available memory
techniques (like the different instances of DRAM or slow FLASH memories) to
still realize a reasonable performance level. Figure 3.2 shows a typical setup
for current high-performance embedded systems with respect to their memory
system, like e.g., found in the MPC755.

Caches are used to hide memory latencies by exploiting the fact that programs
tend to reuse memory locations they have used recently. This principle of locality
was described in [Hai86]. Hennessy and Patterson quantified this effect in [HP96].
They conclude that programs in general spend 90% of their execution time in only
10% of the code.

There are two main aspects of locality:

Spatial Locality: It is likely that memory locations whose addresses are close to
each other will be used close together in time.

13

3 Cache Memories & Cache Analysis

Performance

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

10

100

1000

2000

3000

increasing performance gap

processor performance

memory performance

Figure 3.1: Simplified processor and memory performance evolution over 20 years,
as presented by Mahapatra et al. in [MV99].

Temporal Locality: It is likely that memory locations that were used recently will
soon be reused.

For a tight WCET estimation, we need to analyze the cache behavior. Alfred
Roßkopf of EADS did a study in this field showing that a PowerPC 604 running at
300MHz with caches disabled delivers a similar performance on some benchmarks
as a Motorola 68020 running at 20MHz, while the PowerPC outperforms the 68020
by a factor of 20 with caches [LTH02].

3.2 Cache Memory Parameters

A cache memory can be characterized by three parameters:

Capacity The capacity is the number of bytes the cache may contain.

Line Size The line size is the number of contiguous bytes that are transferred from
memory on a cache miss. The cache can hold at most n = capacity/line size
blocks.

Associativity The associativity is the number of cache locations where a particular
block may reside. n/associativity is the number of sets of a cache. A set can
be considered as a fully associative sub-cache.

14

3.2 Cache Memory Parameters

Complex Pipeline

32KB Instruction
Cache

32KB Data
Cache

Bus Controller

PCI SDRAM

Figure 3.2: Memory hierarchy of the MPC755.

Depending on the associativity, three classifications of caches [Smi82] are com-
monly used:

Fully Associative Caches If a block can reside in any cache location, then the
cache is called fully associative.

Direct Mapped Caches If a block can reside in exactly one location, then the
cache is called direct mapped.

A-Way Set-Associative Caches If a block can reside in exactly A locations, then
the cache is called A-way set-associative.

A memory block has to be selected for replacement when the cache set is full
and the processor requests further data. This is done according to a replacement
strategy.

Common strategies are LRU (Least Recently Used), PLRU (Pseudo Least Recently
Used), FIFO (First In First Out), and random. For more details about the indi-
vidual strategies and how they compare with respect to static cache analysis see
[RGBW07] and [Rei08].

15

3 Cache Memories & Cache Analysis

3.3 Concrete Semantics

3.3.1 Program Representation

We represent programs by control-flow graphs consisting of nodes and edges as
described in Definition 2.1. The nodes represent basic blocks. For each basic block,
the sequence of references to memory is known, i.e., there exists a mapping from
control flow nodes to sequences of references to memory blocks: L : V →M∗.

Definition 3.1 (Control-flow graph with memory references)
A control-flow graph with memory references is the tuple GL = (G,L) of a control-
flow graph G = (V ,E, i) and the mapping of nodes to sequences of references to memory
blocks L : V →M∗.

To ease the description of semantics for individual memory references, we simplify
this graph by transforming it into a graph with at most one memory reference per
node.

Definition 3.2 (Control-flow graph with single memory references)
Given a control-flow graph with memory references GL = ((V ,E, i),L). We define the
control-flow graph with single memory references as the graph GL = ((V ′,E′, i),L′)
constructed by splitting all nodes that map to multiple memory references to nodes with
only one memory reference and introducing intermediate edges between them.

For all later cache semantics and analysis descriptions, we will use this control-flow
graph with single memory references as control-flow graph concept.

3.3.2 Cache Semantics

We restrict our description to the semantics of A-way set-associative caches with
LRU replacement strategy. The fully associative and the direct mapped caches
are special cases of the A-way set-associative cache where A = n and A = 1, respec-
tively.

In the following, we consider an A-way set-associative cache as a sequence of (fully
associative) sets F = (f1, . . . , fn/A), a set fi as a sequence of set lines L = (l1, . . . , lA),
and the store as a set of memory blocks M = {m1, . . . ,ms}. To indicate the absence
of any memory block in a set line, we introduce a new element I and define
M ′ =M ∪ {I}.

16

3.3 Concrete Semantics

Our cache semantics separates two key aspects:

• The set where a memory block may be stored:
This can be determined statically as it depends only on the address of the
memory block. The function mapping a block to its set is called set :M→ F.
The dynamic allocation of memory blocks to the lines of a set is modeled by
cache states.

• The aspect of associativity and the replacement strategy within one set of
the cache:
Here, the history of memory reference executions is relevant. This is modeled
by set states.

Definition 3.3 (Concrete set state)
A (concrete) set state is a function s : L→M ′. S denotes the set of all concrete set states.

Definition 3.4 (Concrete cache state)
A (concrete) cache state is a function c : F→ S. C denotes the set of all concrete cache
states.

If s(lx) =m for a concrete set state s, then x describes the relative age of the memory
block according to the LRU replacement strategy and not the physical position in
the cache hardware.

The most recently referenced memory block is put in the first position l1 of the set.
If the referenced memory block m was in the set before, then all memory blocks in
the set that have been more recently used than m are shifted by one position to the
next set line, i.e., they increase their relative age by one. If the memory block m is
not yet in the set, then all memory blocks in the set are shifted and the ‘oldest’,
i.e., least recently used memory block is removed from the set.

Definition 3.5 (Memory block in the cache state)
Given a concrete cache state c ∈ C. A memory block m ∈M is in the cache state c iff
∃l ∈ L :m = (c(set(m)))(l).

The update function describes the side effects of accessing cached memory on the
set/cache state:

• The set where a memory block may reside in the cache is uniquely deter-
mined by the address of the memory block. Therefore the behavior of the
sets is independent of each other.

17

3 Cache Memories & Cache Analysis

• The LRU replacement strategy is modeled by using the positions of memory
blocks within a set to indicate their relative age. The order of the memory
blocks reflects the history of memory references.

Definition 3.6 (Set update)
A set update function US : S ×M→ S describes the new set state for a given set state
and a referenced memory block.

Definition 3.7 (Cache update)
A cache update function UC : C×M→ C describes the new cache state for a given cache
state and a referenced memory block.

Updates of fully associative sets with LRU replacement strategy are modeled in
the following way:

US(s,m) =

[li 7→ s(li) | i = 1 .. A]; ifm = s(l1)

[l1 7→m,

li 7→ s(li−1) | i = 2 .. h,

li 7→ s(li) | i = h+ 1 .. A];

if ∃lh :m = s(lh)∧ h > 1

[l1 7→m,

li 7→ s(li−1) | i = 2 .. A];
otherwise

Notation:

• [y 7→ z] denotes a function that maps y to z.

• f [y 7→ z] denotes a function that maps y to z and all x , y to f (x).

Updates of A-way set-associative caches are modeled as follows:

UC(c,m) = c[set(m) 7→ US(c(set(m)),m)]

We describe the semantics of a concrete cache with the help of the above update
function UC . We can extend UC to the concrete cache semantics in a control-flow
graph with single memory references.

18

3.4 Abstract Semantics

Definition 3.8 (Concrete cache semantics)
Given a cache update function UC : C ×M→ C and a control-flow graph with single
memory references GL = (G,L). We define the concrete cache semantics UCN : V →
C→ C as follows:

UCN (n,c) :=

c if L(n) is empty

UC(c,L(n)) otherwise

Definition 3.9 (Cache path semantics)
The cache path semantics of a path π = (v1, ...,vn) through the control-flow graph with
single memory references GL = (G,L) for a given cache semantics UCN : V → C→ C is
defined as [[π]]UCN .

3.4 Abstract Semantics

The domain for our abstract interpretation consists of abstract cache states that are
constructed from abstract set states:

Definition 3.10 (Abstract set state)
An abstract set state ŝ : L → 2M

′
maps set lines to sets of memory blocks. Ŝ denotes the

set of all abstract set states.

Definition 3.11 (Abstract cache state)
An abstract cache state ĉ : F→ Ŝ maps sets to abstract set states. Ĉ denotes the set of
all abstract cache states.

The abstract semantics functions describe the effect of a memory reference on
an element of the abstract domain. The abstract set (cache) update function Û for
abstract set (cache) states is an extension of the set (cache) update function U to
abstract set (cache) states.

Definition 3.12 (Abstract update function)
An abstract update function Û : Ĉ ×M→ Ĉ describes the new abstract cache state for a
given abstract cache state and a referenced memory block.

Definition 3.13 (Abstract cache semantics)
Given an abstract cache update function Û : Ĉ ×M → Ĉ and a control-flow graph
with single memory references GL = (G,L). We define the abstract cache semantics

19

3 Cache Memories & Cache Analysis

UCN : V → Ĉ→ Ĉ as follows:

UCN (n, ĉ) :=

ĉ if L(n) is empty

Û (ĉ,L(n)) otherwise

On control flow nodes with at least two predecessors, join-functions are used to
combine the abstract cache states.

Definition 3.14 (Abstract join function)
A join function Ĵ : Ĉ × Ĉ→ Ĉ combines two abstract cache states.

3.5 Must & May Cache Analyses

The must and may cache analyses as introduced in [Fer97] are used to classify
individual memory accesses as cache hits or misses. We will now briefly introduce
the individual update and join functions for both analyses.

For better intuition, we apply both analyses to the simple example from Figure 3.3.
The example accesses possibly three different memory blocks a, b and c during one
iteration which are mapped to the same cache set. We assume a 2-way associative
cache for this example. In Figure 3.4 the control-flow graph with single memory
references for this example is given.

void simpleLoop () {
for (int i = 0 ; i < 100; ++ i) {

i f (somethingUnknownForEachRound) accessA () ;
else accessB () ;
accessC () ;

}
}

Figure 3.3: Program containing one loop which accesses the memory blocks a, b
and c.

20

3.5 Must & May Cache Analyses

Start

for (int i = 0; i < 100; ++i) End

if (somethingUnknownForEachRound)

accessA () accessB ()

accessC ()

ref(a) ref(b)

ref(c)

Figure 3.4: Control-flow graph with single memory references for the program
from Figure 3.3. Nodes with a memory reference to a memory block
x ∈M are annotated with ref (x).

3.5.1 Must Cache Analysis

The must cache analysis computes an under-approximation of the cache contents
and maps cache lines to an upper bound of their ages in the cache. Given a cache
line is in the must set, an access to it will result in a sure cache hit.

Definition 3.15 (Sure Hit Classification)
Given a control-flow graph with single memory references ((V ,E, i),L), a concrete cache
semantics UCN : V → C → C and a set of initial cache states S ∈ 2C . A memory
reference to memory block m ∈M in node n ∈ V (L(n) = (m)) is classified as a sure hit
iff for all paths π through the graph to n and for all initial cache states c ∈ S it holds
that m is in the cache state [[π]]UCN (c).

Definition 3.16 (Set Update and Join – Must Cache Analysis)
Update and join function of the must cache analysis for an abstract cache set are
defined in Figure 3.5.

Figure 3.6 shows the results for applying the must analysis to one round of the
loop from Figure 3.3.

After one round, the must analysis can only classify hits for the cache line c, as the
other cache lines are not accessed on all paths.

21

3 Cache Memories & Cache Analysis

Umust(m,x) :=

[li 7→m(li) | i = 1 .. A]; if x ∈m(l1)

[l1 7→ {x},

li 7→m(li−1) | i = 2 .. h− 1,

lh 7→m(lh−1)∪ (m(lh) \ {x}),

li 7→m(li) | i = h+ 1 .. A];

if ∃lh : x ∈m(lh)∧ h > 1

[l1 7→ {x},

li 7→m(li−1) | i = 2 .. A];
otherwise

Jmust(m,m
′) := [li 7→ {x | ∃la, lb : x ∈m(la)∧ x ∈m′(lb)∧ i = max(a,b)}]

Figure 3.5: The update (Umust) and join (Jmust) functions of the must cache analysis
for an abstract cache set.

must

l1 ∅
l2 ∅

must

l1 {a}
l2 ∅

must

l1 {b}
l2 ∅

a

b

must

l1 ∅
l2 ∅

must

l1 {c}
l2 ∅

c

Figure 3.6: Must cache analysis for one round of the loop from Figure 3.3 starting
with empty must cache.

If we would analyze the loop trivially without any unrolling, the join at the loop
head will eliminate this information again and no hits will be classified in any
iteration. If the loop is at least unrolled twice (see VIVU approach [MAWF98]),
starting from the second round, one can predict the hits to c.

22

3.5 Must & May Cache Analyses

3.5.2 May Cache Analysis

The may cache analysis computes an over-approximation of the cache contents
and maps cache lines to a lower bound of their ages in the cache. If a cache line is
not in the may set, an access to it will result in a sure cache miss.

Definition 3.17 (Sure Miss Classification)
Given a control-flow graph with single memory references ((V ,E, i),L), a concrete cache
semantics UCN : V → C → C and a set of initial cache states S ∈ 2C . A memory
reference to memory block m ∈M in node n ∈ V (L(n) = (m)) is classified as a sure
miss iff for all paths π through the graph to n and for all initial cache states c ∈ S it
holds that m is not in the cache state [[π]]UCN (c).

Definition 3.18 (Set Update and Join – May Cache Analysis)
Update and join function of the may cache analysis for one cache set are defined in
Figure 3.7.

Umay(m,x) :=

[l1 7→ {x},

li 7→m(li−1) | i = 2 .. h,

lh+1 7→m(lh+1)∪ (m(lh) \ {x}),

li 7→m(li) | i = h+ 2 .. A];

if ∃lh : x ∈m(lh)∧ h < A

[l1 7→ {x},

li 7→m(li−1) | i = 2 .. A];
otherwise

Jmay(m,m′) := [li 7→
{x | ∃la, lb : x ∈m(la)∧ x ∈m′(lb)∧ i = min(a,b)}

∪ {x | x ∈m(li)∧@la : x ∈m′(la)}
∪ {x | x ∈m′(li)∧@la : x ∈m(la)}]

Figure 3.7: The update (Umay) and join (Jmay) functions of the may cache analysis
for an abstract cache set.

Figure 3.8 shows the results for applying the may analysis to one round of the
loop from Figure 3.3.

After only one round, the may cache analysis can no longer classify any sure misses
as all accessed lines may be in the cache.

23

3 Cache Memories & Cache Analysis

may

l1 ∅
l2 ∅

may

l1 {a}
l2 ∅

may

l1 {b}
l2 ∅

a

b

may

l1 {a,b}
l2 ∅

may

l1 {c}
l2 {a,b}

c

Figure 3.8: May cache analysis for one round of the loop from Figure 3.3 starting
with empty may cache.

Any unrolling can’t improve this situation, as the program might access any of
these three cache lines per round and not more than two in one round. Therefore
the may analysis can’t prove any eviction in the selected analysis setting with
two-way associativity.

3.6 Summary

In this chapter we explained why current real-time systems use cache memories
and how they work. We briefly described the basic notions of concrete and abstract
cache semantics as later used in this thesis. We have shown the must and may
cache analysis.

24

CHAPTER4
Cache Persistence Analysis

4.1 Motivation

We introduced in the previous Chapter 3 the concepts of cache analysis and the
must and may cache analysis. Now let us look at the program from Figure 4.1.

void ifThenElseLoop () {
for (int i = 0 ; i < 4 ; ++ i) {

i f (somethingUnknownForEachRound) accessA () ;
else accessB () ;

}
}

Figure 4.1: Loop with if-then-else construct either loading memory block a or b
depending on a condition not known statically.

In this code snippet, the loop is executed four times. Depending on some statically
unknown condition somethingUnknownForEachRound either the function accessA
or accessB is executed which will either load the memory block a or b. We assume
we use a 2-way associative cache with LRU replacement policy and both accessed
blocks map to the same set.

As the value of the condition is not statically known, a static analysis only knows
that after any loop iteration both memory blocks a or b may be loaded but doesn’t
know which of them must be loaded. Therefore the static cache analysis has to
assume that in each of the four rounds of the loop the accesses to a or b might
miss the cache. This would result in four possible misses for this loop. Figure 4.2
shows the control flow graph with single memory references for this example and

25

4 Cache Persistence Analysis

Start

for (int i = 0; i < 4; ++i) End

if (somethingUnknownForEachRound)

1: accessA () 2: accessB ()ref(a) ref(b)

Figure 4.2: Control-flow graph with single memory references for the program
from Figure 4.1. Nodes with a memory reference to a memory block
x ∈M are annotated with ref (x).

Figure 4.3 and 4.4 show the must and may cache analysis applied to one round of
the body. With only the must and may cache analysis a more precise result is not
possible even if advanced techniques like virtual loop unrolling (see [MAWF98])
are used.

Intuitively it is clear that as the program accesses only two elements and we have a
2-way cache, after the first load of a and b all further executed memory references
to a and b will be hits in the cache. The aim of cache persistence analysis is to
compute exactly this persistence [Fer97] or first-miss [MWH94] classification to
limit the number of possible misses to one per element in this example.

must

l1 ∅
l2 ∅

must

l1 {a}
l2 ∅

must

l1 {b}
l2 ∅

a

b

must

l1 ∅
l2 ∅

Figure 4.3: Must cache analysis for the loop inside the control-flow graph from
Figure 4.2 starting with empty must cache until fixed point is reached.

26

4.2 Cache Persistence

may

l1 ∅
l2 ∅

may

l1 {a}
l2 ∅

may

l1 {b}
l2 ∅

a

b

may

l1 {a,b}
l2 ∅

may

l1 {a}
l2 {b}

may

l1 {b}
l2 {a}

a

b

may

l1 {a,b}
l2 ∅

Figure 4.4: May cache analysis for the loop inside the control-flow graph Figure 4.2
starting with empty may cache until fixed point is reached.

4.2 Cache Persistence

In the previous section we presented an example that motivates the introduction
of an additional analysis complementing the must and may cache analyses. Now
the notion of the persistence or first-miss classification will be formalized.

Definition 4.1 (Persistence)
Given a control-flow graph with single memory references ((V ,E, i),L), a concrete cache
semantics UCN : V → C→ C and a set of initial cache states S ⊆ C. A memory reference
to memory block m ∈M in node n ∈ V (L(n) = (m)) is classified as persistent iff for all
paths π = (v1, ...,vj) through the graph to n and for all initial cache states c ∈ S one of
these conditions holds:

• @v ∈ {v1, ...,vj} : L(v) = (m) (it is the first reference to m) or

• m is contained in the cache state [[π]]UCN (c) (the reference will cause a cache hit)

This implies that all memory references classified as persistent for the same block
m can cause at most one cache miss, as for all beside the first memory reference to
m it is guaranteed that m is already in the cache on all paths.

Theorem 4.1 (Persistence)
Given a control-flow graph with single memory references ((V ,E, i),L), a concrete cache
semantics UCN : V → C → C, a set of initial cache states S ⊆ C and a memory block
m ∈M. Let P be the set of all nodes n ∈ V that contain a memory reference to m which
are classified as persistent for this concrete cache semantics and initial cache states.
Then it holds that for any path through the graph the memory references of all nodes in
P can cause at most one cache miss.

27

4 Cache Persistence Analysis

Proof 4.1 (Persistence)
Given a control-flow graph with single memory references G = ((V ,E, i),L), a concrete
cache semantics UCN : V → C→ C, a set of initial cache states S ⊆ C and a memory
block m ∈ M. Let P be the set of all nodes n ∈ V that contain a memory reference
to m which are classified as persistent for this concrete cache semantics and initial
cache states. Let us now regard an arbitrary path π through G. Per Definition 4.1,
all instances of nodes from P beside the first instance on the path π must cause a hit.
Therefore at most one miss can be caused for the whole path π by all instances of nodes
from P .

We now revisit our example from Figure 4.2. Let us look at the memory reference
to a inside the graph. For all paths in the graph to the node containing this
memory reference, the condition for the persistence classification holds: Either
this memory reference is the first reference to memory block a or a is still in the
cache. That a stays in the cache after the initial load is guaranteed for any initial
concrete cache state at program start as we only access two elements and we use a
2-way LRU cache. For the memory reference to b the same argumentation is valid.
Therefore both memory references can be classified as persistent and the persistence
constraint can be applied for these references. This implies that at most one miss
can happen for the memory reference to a and one for the memory reference to b
on any path.

The above definitions always take into account the complete control-flow graph
and all possible paths through it. Let us look at the modified version of our two
accesses example from Figure 4.5 that contains two loops which access only two
blocks and one third memory block is accessed in between. The control-flow graph
with single memory references for this example is shown in Figure 4.6. We use the
same cache setup as before and assume that the memory block c maps to the same
set as a and b.

As this program potentially accesses three elements but we only have a 2-way
cache, for some paths evictions from the cache can happen. Still, intuitively it is
clear that inside each loop of this program, like for the example from Figure 4.1,
we can limit the number of possible misses to one per memory block.

For the first loop in the program, the persistence classification and constraint from
above can be used to limit the misses. For the second loop, this doesn’t work, as
there exist paths through the program for which neither the memory reference
to a nor b can be classified as persistent. For example consider this possible path
(only the memory references on the path are shown):

28

4.2 Cache Persistence

void main () {
for (int i = 0 ; i < 4 ; ++ i) {

i f (somethingUnknownForEachRound) accessA () ;
else accessB () ;

}
accessC () ;
for (int i = 0 ; i < 4 ; ++ i) {

i f (somethingUnknownForEachRound) accessA () ;
else accessB () ;

}
}

Figure 4.5: Program with two loops with if-then-else construct either loading
memory block a or b depending on a condition not known statically
and one load of a memory block c in between.

ref (a) ref (b) ref (a) ref (b) ref (c) ref (a) ref (b) ref (a) ref (b)

1 2 1 2 3 4 5 4 5

For any initial concrete cache state at the beginning of the program execution, the
memory reference to a at 4 will be a cache miss, as a got evicted because two other
memory elements got loaded. The same holds for the following memory reference
to b. Therefore these two references that belong to the nodes in the second loop of
the control-flow graph can’t be classified as persistent, as they are neither hits in
the cache nor the first reference to their element on all paths.

Whereas no better global persistence classification is possible, as these memory
references in the second loop really can lead to more misses, it makes sense to be
able to argue about persistence for parts of the control-flow graph. We will call
these parts persistence scopes.

Definition 4.2 (Persistence Scope)
A persistence scope for a control-flow graph G = (V ,E, i) is a subgraph S = (V ′,E′, i′),
where

• V ′ ⊆ V

• E′ = {(x,x′) | x ∈ V ′ ∧ x′ ∈ V ′ ∧ (x,x′) ∈ E}

• i′ ∈ V ′ is the unique entry node for the subgraph

29

4 Cache Persistence Analysis

Start

for (int i = 0; i < 4; ++i)

if (somethingUnknownForEachRound)

1: accessA () 2: accessB ()

3: accessC ()

for (int i = 0; i < 4; ++i) End

if (somethingUnknownForEachRound)

4: accessA () 5: accessB ()

ref(a) ref(b)

ref(c)

ref(a) ref(b)

Figure 4.6: Control-flow graph with single memory references for the program
from Figure 4.5. Nodes with a memory reference to a memory block
x ∈M are annotated with ref (x).

A path π = (v1, ...,vn) through G enters the scope S at node vj iff vj ∈ V ′ ∧ v(j−1) < V
′.

A path π = (v1, ...,vn) through G leaves the scope S at node vj iff vj ∈ V ′ ∧ v(j+1) < V
′.

Given a path π = (v1, ...,vn) through G and a scope S, scopeSuffix(S,π) is the sequence
of nodes (vk , ...,vn) for vk ∈ π with the largest k such that the path π enters the scope S
at vk.

For the control-flow graph from Figure 4.6 the interesting persistence scopes would

30

4.2 Cache Persistence

be the two loops inside the graph. This leads to a scope-aware persistence classifica-
tion.

Definition 4.3 (Scope-Aware Persistence)
Given a control-flow graph with single memory references ((V ,E, i),L), a concrete cache
semantics UCN : V → C → C, a set of initial cache states I ⊆ C and a persistence
scope S = (V ′,E′, i′) inside this graph. A memory reference to memory block m ∈M
in node n ∈ V ′ (L(n) = (m)) is classified as persistent for the scope S iff for all paths
π = (v1, ...,vj) through the graph to n and for all initial cache states c ∈ I one of these
conditions holds:

• @v ∈ scopeSuffix(S,π) : L(v) = (m) (it is the first reference to m since entering
the scope S) or

• m is contained in the cache state [[π]]UCN (c) (the reference will cause a cache hit)

If we look again at the example with the two loops, all memory references can
be classified as persistent for their scope according to this definition. Intuitively
the scopes cut the control-flow into smaller graphs that can be considered in
separation. For this example each of these subgraphs is exactly the control-
flow graph we already regarded for the first example with the single loop from
Figure 4.2. Therefore the same arguments for the persistence classification of the
memory references hold.

As these new scope-aware persistence classification does only hold for a specific scope
but not for the whole graph, it can’t be used to formalize a persistence constraint
that limits the number of misses for paths through the whole program, therefore
we need a scope-aware persistence constraint.

Theorem 4.2 (Scope-Aware Persistence)
Given a control-flow graph with single memory references ((V ,E, i),L), a concrete cache
semantics UCN : V → C→ C, a set of initial cache states I ⊆ C, a memory block m ∈M
and a persistence scope S = (V ′,E′, i′) inside this graph. Let PS be the set of all nodes
n ∈ V ′ in the scope S that contain a memory reference to m which are classified as
persistent for the scope S for this concrete cache semantics and initial cache states. It
holds that for any path through the graph for each time the path enters the scope S the
memory references of all nodes in PS can cause at most one cache miss.

Proof 4.2 (Scope-Aware Persistence)
Given a control-flow graph with single memory references G = ((V ,E, i),L), a concrete
cache semantics UCN : V → C→ C, a set of initial cache states I ⊆ C, a memory block
m ∈M and a persistence scope S = (V ′,E′, i′) inside this graph. Let PS be the set of all

31

4 Cache Persistence Analysis

nodes n ∈ V ′ in the scope S that contain a memory reference to m which are classified
as persistent for the scope S for this concrete cache semantics and initial cache states.
Let us now regard an arbitrary path π through G. Per Definition 4.3, for each entering
of the scope S all instances of nodes from PS beside the first instance on the path π must
cause a hit. Therefore at most one miss can be caused for each entering of the scope S
for the path π by all instances of nodes from P .

4.3 Application to Real-World Software

The example given in Figure 4.1 shows the classic case when persistence analysis
is useful: there exists conditional control flow inside loops with statically not
known conditions. Whereas this is an easy to understand example useful for the
description of the principles of persistence analysis, the interesting point is: where
do such control flow constructs exist in practice and why isn’t it possible to have
a more precise value analysis to compute the value of the condition to avoid the
need for persistence analysis? In this section we show typical code patterns that
occur in real-world safety critical software and feature statically not decidable
control-flow or data-access decision to make use of persistence analysis.

4.3.1 Input Handling - Interface to the Physical World

Typical control software needs to handle input data fed by physical sensors. For
example a flight control software will need to handle the input of e.g., speedome-
ters, altimeters and the actual cockpit control by the pilot. The values of these
inputs are not available during analysis and one must assume that the complete
input range is possible during execution. Therefore the actual code will likely
contain checks as shown in Figure 4.7.

void f l i g h t C o n t r o l () {
for (int i = 0 ; i < 10; ++ i) {

i f (currentAl t i tude () > 100.0) handleHigh () ;
else handleLow () ;

}
}

Figure 4.7: Loop containing an input-dependent if-condition.

32

4.3 Application to Real-World Software

4.3.2 Message Handling - Inter-System Communication

An other important aspect of embedded software is communication between the
different systems. Inside a typical car for example, a multitude of embedded sys-
tems communicate with each other over different bus systems like CAN [THW94]
or FlexRay [PPE+08]. Typical message handling code looks like 4.8 or 4.9. Either
the possible message handlers are hard coded using switching over the message
type or they are registered as callbacks and then handled in the driver layer for
the bus system that is used. In any case, depending on the statically not know
message type, a different code part is executed, either directly inside the switch or
indirectly by invoking a function pointer out of a previously registered handler
array.

void messageHandlingSwitch () {
for (int i = 0 ; i < NUMBER_OF_MESSAGES; ++ i) {

switch (msg [i]−>type) {
case Type1 :

doStuffForThisMessageType1 (msg [i]) ;
break ;

case Type2 :
doStuffForThisMessageType2 (msg [i]) ;
break ;

. . .
}

}
}

Figure 4.8: Loop handling messages. It loops over a buffer with messages and
selects which kind of message handling is required by the type of the
dynamic message.

4.3.3 Error Handling - Catching Runtime Errors

Even if runtime errors like out-of-bounds array accesses or arithmetic overflows
can be ruled out by static software analysis [CCF+05, KWN+10] safety-critical
software has to cope with e.g., hardware errors during runtime. Typically such
error handling doesn’t happen in the normal execution, but the constructs that

33

4 Cache Persistence Analysis

void messageHandlingCallbacks () {
for (int i = 0 ; i < NUMBER_OF_MESSAGES; ++ i) {

regis teredHandler [msg [i]−>type] (msg [i]−> content) ;
. . .

}
}

Figure 4.9: Loop handling messages. It loops over a buffer with messages and calls
the matching message handler callback routine.

check for errors will induce control flow changes depending on unknown values
like shown in Figure 4.10.

void errorHandling () {
for (int i = 0 ; i < NUMBER_OF_EVENTS; ++ i) {

i f (didAnErrorOccur (event [i])) {
errorHandling (event [i]) ;
. . .

}
}

}

Figure 4.10: Loop handling errors. It loops over a buffer with dynamic events and
only executes the error handling if an error occurred.

4.3.4 Data Dependent Algorithms - State Machine Code

More cases of such uncertainty about the possible control-flow transitions are
introduced by the imprecision of the value analysis for complex algorithms or
state machines. Such data-dependent algorithms and state machines are widely
used in the embedded domain [GCH11]. An example for a state machine update
function can be found in Figure 4.11.

Many safety-critical control-software applications, like fly-by-wire or engine con-
trol software contain state machine code, which is mostly generated from SCADE

34

4.4 Summary

void stateMachineUpdate (S t a t e * s t a t e) {
switch (s t a t e −>id) {

case I n i t S t a t e :
doIn i t (s t a t e) ;
s t a t e −>id = Read ;
break ;

case Read :
doRead (s t a t e)
s t a t e −>id = Waiting ;
break ;

. . .
}

}
}

Figure 4.11: State machine update function. Typically called inside a loop, will do
state transition.

or MATLAB models. Whereas there is ongoing research to improve the preci-
sion [WLP+10] by making model level information available for the value analysis,
current state-of-the-art value analysis can’t eliminate all transitions that are im-
possible in reality.

4.4 Summary

In this chapter, we provided the basic idea and motivation behind cache persis-
tence analysis. Beside giving a classic example, we showed typical code structures
and techniques in real-time software that will benefit from the persistence analysis.
The next chapters will focus on the actual analyses.

35

CHAPTER5
Cache Persistence Analysis by

Ferdinand

5.1 Introduction of the Analysis

Ferdinand’s analysis is based on the idea to compute the maximal age for all
memory blocks that may be in the cache. This means the age of a memory block
in the abstract set state m is an upper bound of the age of the memory block in
the concrete set states that are represented by m. To keep track of memory blocks
that already were evicted from the cache, and therefore are older than all blocks
in the cache, an additional age larger than the cache associativity A is introduced.
For a point in the control flow, a block is persistent if it has not been assigned the
additional age A+ 1.

The analysis is based on abstract interpretation and uses as abstract set update
function a modification of the must cache analysis update function with the addi-
tional age A+ 1. The join function is an altered version of the must cache analysis
join, where set intersection is replaced with set union. The update and join
function definitions are presented in Figure 5.1.

5.2 Application to an Example

For a better intuition, the analysis will be applied to the example code snippet
shown in Figure 4.1.

For this and following examples we assume the following analysis settings (if not
specified otherwise):

37

5 Cache Persistence Analysis by Ferdinand

Upers(m,x) =

l1 7→ {x}

l2 7→ (m(l1)∪m(l2)) \ {x}

li 7→m(li) | i = 3 .. A+ 1

if x ∈m(l1)

l1 7→ {x}

li 7→m(li−1) | i = 2 .. h− 1

lh 7→m(lh−1)∪ (m(lh) \ {x})

li 7→m(li) | i = h+ 1 .. A+ 1

if ∃h ∈ {2, ...,A} : x ∈m(lh)

l1 7→ {x}

li 7→m(li−1) | i = 2 .. A

lA+1 7→m(lA)∪ (m(lA+1) \ {x})

otherwise

Jpers(m,m
′) = li 7→

{x | ∃la, lb : x ∈m(la)∧ x ∈m′(lb)∧ i = max(a,b)}
∪ {x | x ∈m(li)∧@la : x ∈m′(la)}
∪ {x | x ∈m′(li)∧@la : x ∈m(la)}

Figure 5.1: The update (Upers) and join (Jpers) functions of the persistence analysis
of Ferdinand.

• A 2-way set associative cache with LRU replacement policy.

• The analyses will only cover one cache set, as the sets are independent.

The semantics of the program snippet are:

• accessA will read memory block a, accessB memory block b, a and b map to
the analyzed set.

• No other memory blocks that are mapped to the analyzed set are accessed
inside the loop.

• The condition of the if-statement is not known by the static analyses for any
loop iteration.

38

5.3 Persistence Analysis Bug

Figure 5.2 shows the fixed point iteration of the persistence analysis for the loop
body of the example given above. The persistence analysis starts with an empty
persistence set at the entry of the loop. Then the set is updated for either a and b
in the two parallel if-then-else parts. The two resulting sets are joined afterwards,
as the control flow joins again after the if-then-else construct. After three rounds
of this computation, the fixed point is reached. Both memory references, to the
memory blocks a and b, are classified as persistent as their age is two in the fixed
point persistence set, which means they will not be evicted, as the age is not higher
than the associativity. Given this classification, the WCET analysis can safely
assume that at most one miss can occur for an access to a and b over the whole
execution of the loop, as they will never be evicted again inside the loop.

pers

l1 ∅
l2 ∅
l3 ∅

pers

l1 {a}
l2 ∅
l3 ∅

pers

l1 {b}
l2 ∅
l3 ∅

a

b

pers

l1 {a,b}
l2 ∅
l3 ∅

pers

l1 {a}
l2 {b}
l3 ∅

pers

l1 {b}
l2 {a}
l3 ∅

a

b

pers

l1 ∅
l2 {a,b}
l3 ∅

pers

l1 {a}
l2 {b}
l3 ∅

pers

l1 {b}
l2 {a}
l3 ∅

a

b

pers

l1 ∅
l2 {a,b}
l3 ∅

Figure 5.2: Fixed point iteration for the persistence analysis by Ferdinand for
the if-then-else loop example (Figure 4.1): The figure shows the fixed
point iteration without joins at the loop head like if the loop would
be infinitely unrolled. After three rounds, the fixed point is reached.
The memory references to the memory blocks a and b are classified as
persistent.

5.3 Persistence Analysis Bug

5.3.1 Counter-Example

In the last sections the persistence analysis by Ferdinand was introduced and its
applicability was demonstrated on a small example. In contrast to the must and
may cache analyses, there exists no correctness proof for the cache persistence
analysis by Ferdinand. If the analysis is applied to a slightly modified example, as

39

5 Cache Persistence Analysis by Ferdinand

shown in Figure 5.3, a bug of the analysis is revealed. It differs from the example
of the last section by accessing three and not only two memory blocks inside the
loop body.

void switchLoop () {
for (int i = 0 ; i < 100; ++ i) {

switch (somethingUnknown ()) {
case 0 : accessA () ; break ;
case 1 : accessB () ; break ;
default : accessC () ; break ;

}
}

}

Figure 5.3: Loop with switch construct accessing memory blocks a, b or c depend-
ing on a condition not known statically.

This problem was discovered by C. Ballabriga and H. Cassé during their use of
the persistence analysis for their own research and remedies were discussed with
AbsInt. Recently other research groups like Mingsong Lv et al. [LYGY10] and
Huynh et al. [HJR11] published similar problems and counter examples.

pers

l1 ∅
l2 ∅
l3 ∅

pers

l1 {b}
l2 ∅
l3 ∅

pers

l1 {a}
l2 ∅
l3 ∅

pers

l1 {c}
l2 ∅
l3 ∅

a

b

c

pers

l1 {a,b,c}
l2 ∅
l3 ∅

pers

l1 {b}
l2 {a,c}
l3 ∅

pers

l1 {a}
l2 {b,c}
l3 ∅

pers

l1 {c}
l2 {a,b}
l3 ∅

a

b

c

pers

l1 ∅
l2 {a,b,c}
l3 ∅

pers

l1 {b}
l2 {a,c}
l3 ∅

pers

l1 {a}
l2 {b,c}
l3 ∅

pers

l1 {c}
l2 {a,b}
l3 ∅

a

b

c

pers

l1 ∅
l2 {a,b,c}
l3 ∅

Figure 5.4: Fixed point iteration for the persistence analysis by Ferdinand for the
switch loop example (Figure 5.3): After three rounds, the fixed point is
reached. The memory references to the three memory blocks a, b and c
are classified as persistent.

Figure 5.4 shows the fixed point iteration for the problematic example. The

40

5.4 Summary

persistence analysis starts with an empty persistence set at the entry of the loop.
Then the set is updated for either a, b or c in the three parallel switch cases.
Afterwards all three resulting sets are joined, as the control flow joins again after
the switch construct. After three rounds of this computation, the fixed point is
reached. All memory references are classified as persistent, as the ages of a, b and
c in the persistence set after reaching the fixed point are still not higher than the
associativity. But intuitively it is clear that with a cache set of two entries, but
possibly three accessed memory blocks mapped to it, at least one of them might be
evicted. A possible access sequence could be: (a,b,c)∗. The access to c will already
evict a, which then needs to be reloaded on the next access to a.

5.3.2 Evaluation

The problem is the combination of the abstract must cache analysis update function,
which only gives correct results if the abstract cache sets under-approximate the
concrete cache contents, with the modified must cache analysis join function.
This join function uses set union and therefore violates this invariant. Even if
the maximal ages are chosen in the join, the join result will potentially contain
elements that might already have been evicted from the cache and therefore result
in an over-approximation of the concrete cache contents.

5.4 Summary

In this chapter, we introduced the well-known cache persistence analysis by
Ferdinand. It is an abstract interpretation based analysis using a modified must
cache analysis. As this analysis has a correctness issue, in the next chapters we
will introduce different novel persistence analyses which are sound. We will
experiment with different approaches and compare their precision.

41

CHAPTER6
Set-Wise Conflict Counting

Persistence Analysis

6.1 Introduction of the Analysis

The basic idea of this analysis is to count the possible number of conflicts per
cache set. We will formulate an analysis based on abstract interpretation that
keeps track of possible conflicting memory blocks per cache set by computing an
over-approximation of all accessed memory blocks.

Frank Mueller introduced a similar analysis together with the notion of first-miss
restricted to direct-mapped instruction caches in [MWH94]. Later the approach
was extended to handle set-associative instruction caches with LRU replacement
strategy in [Mue00]. These analyses are based on a proprietary static cache simu-
lation framework [Mue95].

Definition 6.1 (Abstract Set Domain – Set-Wise Conflict Counting)
The abstract domain Dperscs := 2M of the set-wise conflict counting cache persistence
analysis for one cache set consists of sets of memory blocks ordered by inclusion.

Definition 6.2 (Set Update and Join – Set-Wise Conflict Counting)
The abstract update function Uperscs : Dperscs ×M →Dperscs and join function Jperscs :
Dperscs ×Dperscs →Dperscs of the set-wise conflict counting cache persistence analysis
are defined as:

Uperscs(m,x) :=m∪ {x}

Jperscs(m,m
′) :=m∪m′

43

6 Set-Wise Conflict Counting Persistence Analysis

The basic idea behind this analysis is to compute the set of all memory blocks
possibly accessed so far inside the given persistence scope. The analysis starts
with the empty set at the entry of the persistence scope. Memory blocks are never
removed but only added to the set and on control flow graph joins set union is
used. As long as the set doesn’t contain more memory blocks than the associativity
of the cache, any access to any memory blocks of the set within the persistence
scope is classified as persistent.

Definition 6.3 (Persistence – Set-Wise Conflict Counting)
For a given incoming abstract set state m of a cache set with associativity A, a memory
reference to x ∈M is persistent iff |m| ≤ A.

6.2 Application to the Examples

6.2.1 if-then-else Loop

Figure 6.1 shows the analysis on the if-then-else example, for which it computes
the same results as the original analysis by Ferdinand. Like for the other analysis,
this analysis starts with an empty persistence set at the loop entry. Then the set is
updated for either a or b in parallel and the resulting sets are joined afterwards.
As this analysis doesn’t keep track of any abstract ages, the fixed point is already
reached after two rounds. As the computed persistence sets contain not more
entries than the associativity of the cache, the two memory references are classified
as persistent and therefore each of them can only produce at most one miss.

perscs
∅

perscs
{a}

perscs
{b}

a

b

perscs
{a,b}

perscs
{a,b}

perscs
{a,b}

a

b

perscs
{a,b}

Figure 6.1: Fixed point iteration for the conflict counting persistence analysis for
the if-then-else loop (Figure 4.1): The fixed point is reached after two
rounds. The memory references to a and b are classified as persistent.

44

6.3 Discussion of Analysis Properties

6.2.2 switch Loop

The analysis of the more complex switch loop example (Figure 5.3) with three
possible accesses inside the loop is presented in Figure 6.2. The conflict based
analysis computes a fixed point result that allows none of the three memory
references to be classified as persistent.

perscs
∅

perscs
{b}

perscs
{a}

perscs
{c}

a

b

c

perscs
{a,b,c}

perscs
{a,b,c}

perscs
{a,b,c}

perscs
{a,b,c}

a

b

c

perscs
{a,b,c}

Figure 6.2: Fixed point iteration for the conflict counting persistence analysis
for the switch loop (Figure 5.3): After two rounds, the fixed point is
reached. None of the memory references to a, b and c is classified as
persistent.

6.3 Discussion of Analysis Properties

6.3.1 Soundness

Overview

For our persistence analysis we regard caches using the LRU replacement policy.
Given the concrete semantics for this policy as defined in Section 3.3.2 the follow-
ing holds: If only k different memory blocks mapped to one cache set are accessed
for a k-way LRU cache, none of these k memory blocks will be evicted.

Using this fact, the persistence classification as proposed in Definition 6.3 is
sound if the abstract set state m at a program point p contains all the memory
blocks possibly loaded into the concrete cache on any path from the entry of the
persistence scope to p.

45

6 Set-Wise Conflict Counting Persistence Analysis

We will prove this by induction in three steps:

• Soundness of the initial abstract cache set state at the persistence scope
entry;

• Soundness of the abstract update function Uperscs ;

• Soundness of the abstract join function Jperscs .

Initial State

At the entry of the persistence scope we start with an empty abstract set state
m = ∅. As at the entry of the scope still no accesses have been done for any concrete
execution, m contains all the memory blocks loaded so far.

Update Function

Given the input abstract set state m for the update function Uperscs for a memory
reference to the memory block x at program point p. The set m contains all the
memory blocks loaded into the cache set before program point p.

The update function inserts the referenced element x into m. Therefore the result
m∪ {x} of the update function contains all loaded memory blocks after program
point p.

Join Function

Given the two abstract set states m and m′ as input for the join function Jperscs for
some control-flow join of two paths at program point p. The sets m and m′ contain
the memory blocks loaded on the individual paths.

As the join function is set union, the result m∪m′ of the join will contain all the
possibly loaded memory blocks of both paths.

6.3.2 Termination

As the number of different referenced memory blocks inside a program is finite,
the abstract domain Dperscs = 2M is finite, too. Therefore the termination of the
analysis is guaranteed by the monotonicity of the abstract update Uperscs and join
function Jperscs for the persistence sets.

46

6.4 Analysis Space-Optimization

6.4 Analysis Space-Optimization

As this analysis will classify any memory reference as not persistent as soon as the
persistence set contains more than associativity A memory blocks, an optimized
version is used for the implementation. It will only store up to A memory blocks
in the set and if the set becomes overfull only remember it as a special > value.

Definition 6.4 (Optimized Set Update and Join – Set-Wise Conflict Counting)
The abstract update function Uperscs_optimized and join function Jperscs_optimized for the
space-optimized variant are defined as:

Uperscs_optimized (m,x) :=

> ifm =>∨ |m∪ {x}| > A

m∪ {x} otherwise

Jperscs_optimized (m,m′) :=

> ifm =>∨m′ =>∨ |m∪m′ | > A

m∪m′ otherwise

As the cache associativity is constant for the analysis, the space complexity per set
is reduced from O(n) to O(1) if the analysis accesses n different memory blocks
inside the persistence scope.

Beside saving space, the analysis reaches faster the fixed point, as the conflict set
isn’t changing once the overfull set has been reached.

6.5 Imprecision Scenarios

Given that this cache persistence analysis seems to perform well for our examples
of Figure 4.1 and Figure 5.3 the question remains: in which areas can we improve
precision further with more advanced persistence analyses?

The key idea is to look at situations where overfull conflict sets can occur but
still, memory references may be persistent. We will look at two different cases to
illustrate such situations: unrolled loops and persistent memory references inside
one loop iteration.

47

6 Set-Wise Conflict Counting Persistence Analysis

6.5.1 Imprecision for unrolled loops

For unrolled loops, two kinds of problems show up even for small examples:

• too fast possible eviction: inside the unrolled iterations, memory references
may be classified as not persistent, even if the referenced memory blocks
will stay in the cache several more rounds;

• no resilience against overfull abstract cache sets: if the analysis once computes
an overfull abstract cache set, all further memory references will be classified
as non-persistent.

For the first problem, we can use our switch example from Figure 5.3. The fixed
point iteration in Figure 6.2 results in no memory references classified as persistent
after the first loop iteration. In reality, all memory references inside the first three
rounds are persistent because with a two-way LRU cache, there can’t be two misses
to the same element during only three rounds as each round accesses only one
element. Our analysis result allows all memory references to be classified as
misses.

For the second problem, we can construct an example like in Figure 6.3.

void prefixLoop () {
for (int i = 0 ; i < NUMBER_OF_EVENTS; ++ i) {

i f (i == 0) / / on ly done in f i r s t round
accessA () ;

i f (somethingUnknownForEachCall ()) accessB () ;
else accessC () ;

}
}

Figure 6.3: Loop which accesses three memory blocks a, b and c mapping to the
same cache set. a is only accessed once in the first iteration.

If we assume that the accessed memory blocks a, b and c in the example map to
the same set and we have a two-way associative cache, in reality, b and c will never
be evicted after the first access.

Given that we use our persistence analysis in an analysis framework that allows
loop unrolling [MAWF98], we would assume the analysis yields the same result if
we unroll this loop at least twice. But as the fixed point iteration for this example

48

6.5 Imprecision Scenarios

in Figure 6.4 shows, neither the memory references to b nor c will be classified as
persistent by the analysis.

The conflict counting analysis will compute the over-approximation of all accessed
memory blocks a,b,c after the first round and then classify all further memory
references in any iteration as not persistent. The analysis will never recover.

perscs
∅

perscs
{a}

a

perscs
{a,b}

perscs
{a,c}

b

c

perscs
{a,b,c}

perscs
{a,b,c}

perscs
{a,b,c}

b

c

perscs
{a,b,c}

Figure 6.4: Fixed point iteration for the conflict counting persistence analysis for
the example in Figure 6.3: After two rounds, the fixed point is reached.
The memory references to b and c are classified as not persistent.

6.5.2 Imprecision for inner-iteration persistence

Let’s consider a loop as shown in Figure 6.5.

void innerPers is tenceLoop () {
for (int i = 0 ; i < NUMBER_OF_EVENTS; ++ i) {

i f (somethingUnknown1 ()) accessA () ;
else accessB () ;
accessC () ;
i f (somethingUnknown2 ()) accessA () ;
else accessB () ;

}
}

Figure 6.5: Loop which accesses three memory blocks a, b and c mapping to the
same cache set. a and b are possibly accessed twice.

49

6 Set-Wise Conflict Counting Persistence Analysis

If we assume a two-way associative cache and all memory blocks are mapped to
the same set, it is clear that we will have potential evictions inside the loop, as the
body accesses three different memory blocks. Whereas inside on loop iteration,
only the first access to a or b can be a miss, as we only access one other element c
in between. Therefore it might be a good idea to use the loop body as a persistence
scope, to capture this behavior.

If we apply the set-wise conflict counting cache persistence analysis to the loop body
as scope, this result is not computed (see Figure 6.6). The analysis only classifies
the first memory references to either a or b as possibly persistent, but not the
second.

perscs
∅

perscs
{a}

perscs
{b}

a

b

perscs
{a,b}

perscs
{a,b,c}

c

perscs
{a,b,c}

perscs
{a,b,c}

a

b

perscs
{a,b,c}

Figure 6.6: Analysis for one round of the innerPersistenceLoop loop example
(Figure 6.5). The second memory references to neither a nor b are
classified as persistent.

6.5.3 Proposed improvements

The reason for the imprecision shown above is the simplistic conflict counting for
the whole set. If the set becomes overfull at one point, no more memory references
can be classified as persistent by the analysis. In addition, the overfull conflict set
is reached too early during the fixed point computation.

To overcome these limitations, we will introduce more precise analyses in the next
chapters and compare their results.

To have a better way to quantify the precision of our analyses and to compare them,
we introduce a framework to generate and run synthetic tests for our persistence
analyses.

50

6.6 Benchmarking

6.6 Benchmarking

Until now, we only looked at small examples to understand the principles of
persistence analysis. Whereas this allows a good understanding of how the analysis
works and to show special cases which lead to imprecision, it provides no good
overview about the general analysis precision.

To allow a better comparison of the different analyses introduced in this thesis,
we will use a framework for automated test case generation and execution of the
analyses. The framework will generate a control-flow graph for a set of parameters
and execute the analysis for one cache set on this graph.

We will choose eleven different test situations, and then generate 10.000 control-
flow graphs for each of the situations, and run the individual analyses on them.
The generator is deterministic, therefore the results will be comparable for the
different analyses. This larger set of analysis results will allow for a more realistic
analysis comparison.

The C++ implementation of the benchmarking framework is shown in Section A.1.
The framework first constructs the control-flow graphs for the different scenarios
and then executes our persistence analyses on them. It computes the MFP solution
as introduced in Section 2.3 and provides statistics about the number of persistent-
classified memory references.

6.6.1 Benchmark Scenarios

We consider the following eleven scenarios:

scenario1 2-way associative cache, loop unrolled twice, two different memory
blocks accessed on two control-flow paths inside the loop. Our example in
Figure 4.1 is one instance of this scenario.

scenario2 2-way associative cache, loop unrolled eight times, three different
memory blocks accessed on three control-flow paths inside the loop. Our
example in Figure 5.3 is one instance of this scenario.

scenario3 2-way associative cache, loop unrolled twice, two different memory
blocks accessed on two control-flow paths inside the loop, potentially one
extra element accessed in the unrolled iterations. Our example in Figure 6.3
is one instance of this scenario.

51

6 Set-Wise Conflict Counting Persistence Analysis

scenario4 4-way associative cache, loop unrolled eight times, four different mem-
ory blocks accessed on four control-flow paths inside the loop, potentially
two extra memory blocks accessed in the unrolled iterations. Similar to
scenario3, but with more possible control-flow paths and memory blocks.

scenario5 8-way associative cache, loop unrolled eight times, eight different
memory blocks accessed on four control-flow paths inside the loop, poten-
tially four extra memory blocks accessed in the unrolled iterations, but only
four of the other memory blocks accessed there. Similar to scenario3 or
scenario4, but inside the unrolled prefix, it accesses still less than associa-
tivity many memory blocks, but different ones than in the not-unrolled last
iteration. The unrolled iterations form control-flows similar to the one seen
inside the loop in Figure 6.5.

scenario6 8-way associative cache, loop unrolled sixteen times, eight different
memory blocks accessed on eight control-flow paths inside the loop, poten-
tially sixteen extra memory blocks accessed in the unrolled iterations, but
none of the other memory blocks accessed there. Similar to scenario5, but in-
side the unrolled prefix, it accesses only different memory blocks compared
with the last not-unrolled iteration.

scenario7 8-way associative cache, loop unrolled eight times, eight different
memory blocks accessed on four control-flow paths inside the loop, poten-
tially eight extra memory blocks accessed in the unrolled iterations, but
only six of the other memory blocks accessed there. Another variation of
scenario5, more different memory blocks accessed in the unrolled iterations.

scenario8 variation of scenario4, but with reuse of one random element per
iteration on random paths.

scenario9 variation of scenario5, but with reuse of two random memory blocks
per iteration on random paths.

scenario10 variation of scenario6, but with reuse of four random memory blocks
per iteration on random paths.

scenario11 variation of scenario8, but with reuse of six random memory blocks
per iteration on random paths.

As benchmark results we get:

• number of memory references during the unrolled iterations

• number of memory references that are classified as persistent during un-
rolled iterations

52

6.6 Benchmarking

• number of memory references in the not-unrolled iterations

• number of memory references that are classified as persistence after the
fixed point is reached for the remaining iterations

We will use these results to quantitatively compare our analyses.

6.6.2 Benchmark Results

Overview In Table 6.1 the results for the set-wise conflict counting analysis are
shown. The percentage of persistent-classified memory references for the different
scenarios is illustrated in Figure 6.7.

Review of the Scenarios Only for the first scenario scenario1, which never
accesses more than associativity different memory blocks on any path, the analysis
can classify all memory references as persistent. For the other scenarios, only
for some of the 10.000 generated control-flow graphs of scenario3 and scenario4,
for which no overfull conflict sets occur, persistent classifications appear. For all
other scenarios and runs, the analysis eventually reaches an overfull conflict set.
Only some memory references during the first unrolled iterations are therefore
classified as persistent in all other scenarios. During the unrolled iterations, we
can classify persistent memory references until an overfull conflict set is reached.
As shown above in Figure 6.2 for the switch example from Figure 5.3, this can be
relatively early compared to the real execution.

Pers.

50%

100%

150%

200%

sc
en

ar
io1

sc
en

ar
io2

sc
en

ar
io3

sc
en

ar
io4

sc
en

ar
io5

sc
en

ar
io6

sc
en

ar
io7

sc
en

ar
io8

sc
en

ar
io9

sc
en

ar
io1

0

sc
en

ar
io1

1

as persistent classified memory references in percent, unrolled iteration

as persistent classified memory references in percent, fixed point of last not-unrolled iteration

Figure 6.7: Comparison of analysis precision for different synthetic benchmark
scenarios for the set-wise conflict counting analysis.

53

6 Set-Wise Conflict Counting Persistence Analysis

Unrolled Iterations Last Not-Unrolled Iteration

References Pers. Pers. % References Pers. Pers. %

scenario1 19998 19998 100.00% 19998 19998 100.00%

scenario2 209979 29997 14.29% 29997 0 0.00%

scenario3 25004 25004 100.00% 19998 9986 49.93%

scenario4 349706 66540 19.03% 39996 4 0.01%

scenario5 420025 420025 100.00% 79992 0 0.00%

scenario6 1199585 126241 10.52% 79992 0 0.00%

scenario7 699808 113661 16.24% 79992 0 0.00%

scenario8 419714 79402 18.92% 49995 0 0.00%

scenario9 699967 168674 24.10% 99990 0 0.00%

scenario10 1199472 126138 10.52% 119988 0 0.00%

scenario11 1120730 177753 15.86% 139986 0 0.00%

Table 6.1: Benchmark results for the set-wise conflict counting analysis.

6.7 Summary

In this chapter we introduced a persistence analysis based on counting the possible
conflicts inside one cache set. This approach is similar to the concept of the first-
miss analysis introduced in [MWH94]. We applied the analysis to our running
examples to get a better intuition and argued about its correctness.

We have shown possible areas of analysis imprecision and introduced a bench-
marking framework to get quantitative results for later analyses comparison. The
set-wise conflict counting persistence analysis performed only well for bench-
marks never accessing more memory blocks than fitting into the cache sets. In
the following chapters, we will try to improve on these results by designing more
precise persistence analyses.

54

CHAPTER7
Element-Wise Conflict Counting

Persistence Analysis

7.1 Introduction of the Analysis

In Chapter 6 on page 43 we have shown the basic idea of set-wise conflict counting
and a cache persistence analysis based on this. Whereas this analysis yields sound
results, it has some imprecisions as shown in Section 6.5.

The reason for this imprecision is that our analysis only considers the conflicts
inside the whole set, but doesn’t differentiate between conflicts for the individual
elements that enter the set inside the persistence scope. Therefore we now improve
the previous persistence analysis by tracking the conflicting elements per cache
set entry.

As we now track the conflicts per element, the abstract domain Dpersce for our
analysis is no longer a set of memory blocks as for the set-wise conflict-counting
persistence analysis. Instead we use a mapping of memory blocks to such sets of
blocks M→ 2M .

Definition 7.1 (Abstract Set Domain – Element-Wise Conflict Counting)
The abstract domain Dpersce of the element-wise conflict counting cache persistence
analysis for one cache set is a mapping from memory blocks to potential conflict sets
M→ 2M .

Definition 7.2 (Set Update and Join – Element-Wise Conflict Counting)
The abstract update function Upersce : Dpersce ×M →Dpersce and join function Jpersce :
Dpersce ×Dpersce →Dpersce of the element-wise conflict counting cache persistence

55

7 Element-Wise Conflict Counting Persistence Analysis

analysis are defined as:

Upersce(m,x) :=
[x 7→Uperscs(∅,x),
y 7→Uperscs(m(y),x) | y , x∧m(y) , ∅
y 7→ ∅ | y , x∧m(y) = ∅];

Jpersce(m,m
′) := [x 7→ Jperscs(m(x),m′(x))];

They reuse the abstract update function Uperscs and join function Jperscs of the set-wise
conflict counting cache persistence analysis as defined in Definition 6.2. If we
substitute these functions with their definitions, the update and join functions are:

Upersce(m,x) :=
[x 7→ {x},
y 7→m(y)∪ {x} | y , x∧m(y) , ∅
y 7→ ∅ | y , x∧m(y) = ∅];

Jpersce(m,m
′) := [x 7→m(x)∪m′(x)];

If the program references a memory block x ∈M we ensure that we update its
conflict counting set. Given the definition of the Uperscs function, this ensures we
have at least x itself inside this set afterwards. For all other elements y ∈M∧y , x,
we only update the individual conflicting sets if y was already referenced, e.g., the
set for y is not empty.

Definition 7.3 (Persistence – Element-Wise Conflict Counting)
For a given abstract set state m of a cache set with associativity A, a memory reference
to x ∈M is persistent iff |m(x)| ≤ A.

Huynh et al. present a similar approach in [HJR11]. Instead of arguing about the
number of possible conflicts, they argue about the number of younger elements per
element. Their analysis assigns, like the original persistence analysis by Ferdinand,
abstract ages to the possible elements inside the cache that are based on the size of
these younger elements sets. Only if associativity many different younger elements
are collected, an element may be evicted.

56

7.2 Application to the Examples

7.2 Application to the Examples

7.2.1 if-then-else Loop

Figure 7.1 shows the analysis on the if-then-else example, for which it computes
the same results as both the analysis by Ferdinand and the set-wise conflict
counting cache persistence analysis. The analysis starts with an empty conflict set
for every memory block at the loop entry. Then the set is updated for either a or b
in parallel and the resulting sets are joined afterwards. As this analysis keeps track
of conflicts per element, it needs one round more to stabilize than the set-wise
conflict counting. Since the computed conflict sets for all elements contain not
more entries than the associativity of the cache, the two memory references are
classified as persistent and therefore each of them can only cause at most one
miss.

persce
a ∅
b ∅

persce
a {a}
b ∅

persce
a ∅
b {b}

a

b

persce
a {a}
b {b}

persce
a {a}
b {a,b}

persce
a {a,b}
b {b}

a

b

persce
a {a,b}
b {a,b}

persce
a {a}
b {a,b}

persce
a {a,b}
b {b}

a

b

persce
a {a,b}
b {a,b}

Figure 7.1: Fixed point iteration for the element-wise conflict counting persistence
analysis for the if-then-else loop example (Figure 4.1): After three
rounds, the fixed point is reached. The memory references to a and b
are classified as persistent.

7.2.2 switch Loop

The more complex example with three memory references is presented in Fig-
ure 7.2. Like the set-wise conflict counting, this analysis computes a fixed point
result that allows none of the three memory references to be classified as persistent.
But in contrast to the simpler set-wise analysis results shown in Figure 6.2, this
analysis only classifies all memory references as non-persistent after the second
fixed point iteration round. This will allow for a more precise analysis if we unroll
the loop, as only one miss per element is allowed in the first two iterations.

57

7 Element-Wise Conflict Counting Persistence Analysis

persce
a ∅
b ∅
c ∅

persce
a ∅
b {b}
c ∅

persce
a {a}
b ∅
c ∅

persce
a ∅
b ∅
c {c}

a

b

c

persce
a {a}
b {b}
c {c}

persce
a {a,b}
b {b}
c {c,b}

persce
a {a}
b {a,b}
c {a,c}

persce
a {a,c}
b {b,c}
c {c}

a

b

c

persce
a {a,b,c}
b {a,b,c}
c {a,b,c}

persce
a {a,b,c}
b {a,b,c}
c {a,b,c}

persce
a {a,b,c}
b {b}
c {a,b,c}

persce
a {a}
b {a,b,c}
c {a,b,c}

persce
a {a,b,c}
b {a,b,c}
c {c}

a

b

c

persce
a {a,b,c}
b {a,b,c}
c {a,b,c}

Figure 7.2: Fixed point iteration for the element-wise conflict counting persistence
analysis for the switch loop example (Figure 5.3): After three rounds,
the fixed point is reached. None of the memory references to a, b and c
is classified as persistent.

58

7.3 Discussion of Analysis Properties

7.3 Discussion of Analysis Properties

7.3.1 Soundness

Overview

For our persistence analysis we consider caches using the LRU replacement policy.
Like in Section 6.3 we use a characteristic of the LRU replacement semantics as
defined in Section 3.3.2: A memory block x is earliest evicted from a k-way LRU
cache after k accesses to different memory blocks.

Using this fact, the persistence classification as proposed in Definition 7.3 is sound,
if for the abstract set state m holds: m(x) contains the memory blocks loaded into
the concrete cache inside the persistence scope since the last reference to x on any
path including the memory block x itself (an over-approximation of all conflicting
memory blocks).

We will prove this by induction in three steps:

• Soundness of the initial abstract cache set state at the persistence scope
entry;

• Soundness of the abstract update function Upersce ;

• Soundness of the abstract join function Jpersce .

Initial State

At the entry of the persistence scope we start with an abstract set state m = [x→
∅ | ∀x ∈M]. As at the entry of the scope still no accesses have been performed for
any concrete execution, the property holds for m(x) for all x ∈M.

Update Function

Given the input abstract set state m for the update function Upersce for a memory
reference to the memory block x at program point p.

The update function will modify m in the following ways:

• It will reset m(x) to only contain x itself. As we just have referenced x, this is
the correct approximation.

59

7 Element-Wise Conflict Counting Persistence Analysis

• For all other m(y) | y ∈M with y , x there are two cases:

– m(y) = ∅: As m(y) is a safe approximation, this means, y has not been
loaded in the cache since the start of the scope. Therefore no memory
block is inserted into m(y), the approximation is still safe.

– m(y) , ∅: The memory block x will be inserted into the set m(y) to
ensure the safety of the approximation.

Therefore the update function results in a safe approximation after program point
p.

Join Function

Given the two abstract set states m and m′ as input for the join function Jpersce for
some control-flow join of two paths at program point p. For all x ∈M, m(x) and
m′(x) are safe approximations of the loaded memory blocks that conflict with x on
the individual paths.

As the join function is the set union for the individual m(x) and m′(x) for all x ∈M,
the result of the join will be an safe approximation of the loaded memory blocks
that conflict with x for both paths.

7.3.2 Termination

As the number of different referenced memory blocks inside a program is finite,
the abstract domain Dpersce =M→ 2M is finite, too. Therefore the termination of
the analysis is guaranteed by the monotonicity of the abstract update Upersce and
join function Jpersce for the persistence sets.

7.4 Analysis Space-Optimization

We can apply the same optimization as described in Section 6.4. As the cache
associativity is constant for the analysis, the space complexity per set is reduced
from O(n2) to O(n) if the program references n different memory blocks inside the
persistence scope.

60

7.5 Precision Improvements

Definition 7.4 (Optimized Set Update and Join – Element-Wise Conflict Counting)
The abstract update function Upersce_optimized and join function Jpersce_optimized for the
space-optimized variant are defined as:

Upersce_optimized (m,x) :=

[x 7→Uperscs_optimized (∅,x),

y 7→Uperscs_optimized (m(y),x) | y , x∧m(y) , ∅
y 7→ ∅ | y , x∧m(y) = ∅];

Jpersce_optimized (m,m′) := [x 7→ Jperscs_optimized (m(x),m′(x))];

7.5 Precision Improvements

In Section 6.5 two cases of imprecision in the set-wise conflict counting cache
persistence analysis are demonstrated. They both stem from the fact, that once
the conflict set is overfull, the set-wise conflict counting cache persistence analysis
can’t classify any memory reference as persistent. We now review these cases for
the improved element-wise conflict counting cache persistence analysis.

7.5.1 Precision for unrolled loops

For the set-wise conflict counting cache persistence analysis it was not possible to
classify any memory references inside the example from Figure 6.3 as persistent
after one iteration. In practice neither b nor c will be evicted in any iteration. In
Figure 7.3 we show the fixed point iteration for this analysis. As we now track the
conflicts per element, the analysis is able to classify the memory references to b
and c as persistent for all iterations. Only a will be possibly evicted after the first
iteration.

7.5.2 Precision for inner-iteration persistence

The other precision problem for the set-wise conflict counting was the innerPersis-
tenceLoop as shown in Figure 6.5. Figure 7.4 shows the fixed point iteration for the
element-wise conflict counting analysis. All memory references can be classified
as persistent by the improved analysis in contrast to the set-wise conflict counting
cache persistence analysis.

61

7 Element-Wise Conflict Counting Persistence Analysis

persce
a ∅
b ∅
c ∅

persce
a {a}
b ∅
c ∅

a

persce
a {a,b}
b {b}
c ∅

persce
a {a,c}
b ∅
c {c}

b

c

persce
a {a,b,c}
b {b}
c {c}

persce
a {a,b,c}
b {b}
c {b,c}

persce
a {a,b,c}
b {b,c}
c {c}

b

c

persce
a {a,b,c}
b {b,c}
c {b,c}

persce
a {a,b,c}
b {b,c}
c {b,c}

persce
a {a,b,c}
b {b}
c {b,c}

persce
a {a,b,c}
b {b,c}
c {c}

b

c

persce
a {a,b,c}
b {b,c}
c {b,c}

Figure 7.3: Fixed point iteration for the element-wise conflict counting persistence
analysis for the example in Figure 6.3: After two rounds, the fixed
point is reached. The memory references to b and c are classified as
persistent.

7.6 Benchmarking

Overview In Table 7.1 the results for the element-wise conflict counting per-
sistence analysis for our benchmark scenarios from Section 6.6 are shown. The
percentage of persistent classified memory references for the different scenarios
are illustrated in Figure 7.5. The results of the set-wise conflict counting analysis
from Chapter 6 are included for comparison.

Review of the Scenarios By construction, the element-wise conflict counting
analysis is at least as precise as the set-wise conflict counting variant. For the

62

7.6 Benchmarking

persce
a ∅
b ∅
c ∅

persce
a {a}
b ∅
c ∅

persce
a ∅
b {b}
c ∅

a

b

persce
a {a}
b {b}
c ∅

persce
a {a,c}
b {b,c}
c {c}

c

persce
a {a}
b {a,b,c}
c {a,c}

persce
a {a,b,c}
b {b}
c {b,c}

a

b

persce
a {a,b,c}
b {a,b,c}
c {a,b,c}

Figure 7.4: Analysis for one round of the innerPersistenceLoop loop example (Fig-
ure 6.5). The memory references to a and b are classified as persistent.

simple scenario1 both analysis are as precise as possible, all memory references
are persistent, as not more than associativity different elements are accessed. For
the scenario2, which accesses more than associativity many elements in the not
unrolled last iteration, the precision gain is the slower eviction during the unrolled
iterations. The same effect occurs for scenario4. Whereas this scenario accesses
only associativity different elements in the not unrolled iterations, there exists no
analysis run for which the conflict sets per element don’t become overfull. This
happens because of the random accessed two additional elements during the eight
unrolled iterations. The tests scenario6 and scenario10 accesses none of the blocks
out of the last iteration during the unrolled iterations. Therefor the conflict sets for
the elements accessed in the not unrolled iterations become never overfull, as they
only get instantiated and filled during the last iteration. This allows persistent
classifications of all memory references in the not unrolled iterations. For all other
scenarios, there exists at least some analysis runs for which the fixed point result
still allows persistent classifications. For these analysis runs, similar effects as in
the Figures 7.3 and 7.4 happen.

Conclusion The results show, that this analysis is even able to classify memory
references as persistent, if in the unrolled iterations more elements than the size
of the set get accessed. This is by construction, as we reset the conflict set for
an element if it is referenced. Still, during the unrolled iterations, we evict the
elements faster than in the real execution, as shown in the previous section for the
switch example from Figure 5.3. The analysis is by design in all scenarios at least

63

7 Element-Wise Conflict Counting Persistence Analysis

as precise as the set-wise conflict counting.

Unrolled Iterations Last Not-Unrolled Iteration

References Pers. Pers. % References Pers. Pers. %

scenario1 19998 19998 100.00% 19998 19998 100.00%

scenario2 209979 66000 31.43% 29997 0 0.00%

scenario3 25004 25004 100.00% 19998 15030 75.16%

scenario4 349706 128185 36.66% 39996 15 0.04%

scenario5 420025 420025 100.00% 79992 39996 50.00%

scenario6 1199585 277212 23.11% 79992 79992 100.00%

scenario7 699808 254571 36.38% 79992 19998 25.00%

scenario8 419714 165179 39.36% 49995 2489 4.98%

scenario9 699967 332990 47.57% 99990 52510 52.52%

scenario10 1199472 277340 23.12% 119988 119988 100.00%

scenario11 1120730 494098 44.09% 139986 49268 35.19%

Table 7.1: Benchmark results for the element-wise conflict counting analysis.

7.7 Summary

In this chapter we introduce a refined version of the conflict counting. Instead of
tracking conflicts per whole cache set, we track them per element. Huynh et al.
introduced a similar approach in [HJR11] by tracking the younger elements of all
accessed elements.

This analysis performs well both on our running examples and in the benchmark-
ing framework. It is more precise than the previous set-wise conflict counting
analysis from Chapter 6. For eight of eleven of our testing scenarios, the set-wise
conflict counting analysis is able to classify more than one quarter of the memory
references as persistent.

Still the analysis has room for improvements for the unrolled loop iterations, as it
potentially evicts elements too early, as shown by the example in Figure 5.3. In
the next chapter, we introduce a novel persistence analysis based on the may cache
analysis instead conflict counting to fix this imprecision.

64

7.7 Summary

Pers.

50%

100%

150%

200%

sc
en

ar
io1

sc
en

ar
io2

sc
en

ar
io3

sc
en

ar
io4

sc
en

ar
io5

sc
en

ar
io6

sc
en

ar
io7

sc
en

ar
io8

sc
en

ar
io9

sc
en

ar
io1

0

sc
en

ar
io1

1

set-wise conflict counting, persistent memory references (%), unrolled iteration

set-wise conflict counting, persistent memory references (%), fixed point

element-wise conflict counting, persistent memory references (%), unrolled iteration

element-wise conflict counting, persistent memory references (%), fixed point

Figure 7.5: Comparison of analyses precision for different synthetic benchmark
scenarios and persistence analyses.

65

CHAPTER8
May Analysis Based Cache Persistence

Analysis

8.1 Introduction of the Analysis

In the previous Chapters 6 and 7 we introduced two novel persistence analyses
based on the principles of conflict counting. Both are able to derive sound and
precise results for the persistence classification of memory references. Still, the
switch loop example from Figure 8.2 shows a little imprecision if we unroll the loop.
Instead of classifying the memory references inside the first three iterations as
persistent, the set-wise conflict counting persistence analysis already classifies the
memory references as not persistent from the second round on, the element-wise
analysis from the third. We now will sketch an analysis that improves this.

The new analysis is a combination of two analyses that keep track of the possible
ages of the cache set entries:

• The may cache analysis that computes an over-approximation of the cache set
contents, see Section 3.5.

• A m̂ay-cache analysis that similarly to the persistence analysis by Ferdinand
keeps track of the maximal ages of the cache contents and whether an
memory block was evicted. The m̂ay-cache analysis is a modification of the
may cache analysis. Instead of the minimal age, it tracks the maximal age.

Like for the persistence analysis by Ferdinand, an additional ageA+1 is introduced
to keep track of all memory blocks that might be evicted. The m̂ay-analysis uses
the knowledge about the possible number of cache set entries provided by the
may-analysis running in parallel to prevent eviction of memory blocks if the cache
set is not yet completely filled.

67

8 May Analysis Based Cache Persistence Analysis

As the analysis only keeps track of the memory blocks being accessed since the
start of the persistence analysis scope – in the examples this would be the entry
of the loop – the assumption that no memory blocks will be evicted until full
associativity of the cache set is reached is only sound if LRU policy is used.
Other policies are less predictable [Rei08] and might evict memory blocks earlier
depending on the initial cache state at the start of the persistence analysis.

Definition 8.1 (Abstract Set Domain – May-Based Persistence)
The abstract domain Dpersmay of the may-based cache persistence analysis for one
cache set is defined as ({1, ..,A} → 2M)× ({1, ..,A+ 1} → 2M).

Definition 8.2 (Set Update and Join – May-Based Persistence)
The abstract update and join functions of the may-based cache persistence analysis
for one cache set are defined as:

Upersmay ((m,m̂),x) := (Umay(m,x), Um̂ay(m,m̂,x))

Jpersmay ((m,m̂), (m′, m̂′)) := (Jmay(m,m′), Jm̂ay(m̂, m̂′))

Um̂ay(m,m̂,x) :=

[l1 7→ {x},

li 7→ m̂(li−1) \ {x} | i = 2 .. A,

lA+1 7→ (m̂(lA+1)∪ m̂(lA)) \ {x}];

if mayevict(m,x)

[l1 7→ {x},

li 7→ m̂(li−1) \ {x} | i = 2 .. A− 1,

lA 7→ (m̂(lA)∪ m̂(lA−1)) \ {x},

lA+1 7→ m̂(lA+1) \ {x}];

otherwise

mayevict(m,x) := (|{y | y , x∧∃li : y ∈m(li)}| ≥ A)

Jm̂ay(m̂, m̂′) := [li 7→
{x | ∃la, lb : x ∈ m̂(la)∧ x ∈ m̂′(lb)∧ i = max(a,b)}

∪ {x | x ∈ m̂(li)∧@la : x ∈ m̂′(la)}
∪ {x | x ∈ m̂′(li)∧@la : x ∈ m̂(la)}]

Umay and Jmay are the original may cache analysis update and join functions for one
cache set as shown in Definition 3.18.

68

8.2 Application to the Examples

Definition 8.3 (Persistence – May-Based Persistence)
For a given abstract set state (m,m̂) of a cache set with associativity A, a memory
reference to x ∈M is persistent iff x < m̂(lA+1).

8.2 Application to the Examples

8.2.1 if-then-else Loop

Figure 8.1 shows the may-based analysis on the if-then-else example, for which it
computes the same results as the other analyses. The may-based analysis starts
with an empty abstract persistence state at the loop entry (empty may cache and
m̂ay cache). Then the state is updated for either a or b in parallel and the resulting
states are joined afterwards. The fixed point is reached after three rounds. Both
memory references are classified as persistent and therefore each of them can only
cause at most one miss.

may m̂ay

∅ l1 ∅
∅ l2 ∅

l3 ∅

may m̂ay

{a} l1 {a}
∅ l2 ∅

l3 ∅

may m̂ay

{b} l1 {b}
∅ l2 ∅

l3 ∅

a

b

may m̂ay

{a,b} l1 {a,b}
∅ l2 ∅

l3 ∅

may m̂ay

{a} l1 {a}
{b} l2 {b}

l3 ∅

may m̂ay

{b} l1 {b}
{a} l2 {a}

l3 ∅

a

b

may m̂ay

{a,b} l1 ∅
∅ l2 {a,b}

l3 ∅

may m̂ay

{a} l1 {a}
{b} l2 {b}

l3 ∅

may m̂ay

{b} l1 {b}
{a} l2 {a}

l3 ∅

a

b

may m̂ay

{a,b} l1 ∅
∅ l2 {a,b}

l3 ∅

Figure 8.1: Fixed point iteration for the may-based persistence analysis for the
if-then-else loop example (Figure 4.1): After three rounds, the fixed
point is reached. The memory references to a and b are classified as
persistent.

8.2.2 switch Loop

In contrast to the similar persistence analysis by Ferdinand, the may-based analysis
handles the problematic switch example correctly, as illustrated in Figure 8.2.
Unlike the analysis by Ferdinand, which uses the must-analysis aging, the novel

69

8 May Analysis Based Cache Persistence Analysis

analysis based on may-analysis aging computes in the third round of the fixed-
point iteration that all of the accessed memory blocks a, b and c might be evicted.
This is both a result of the used may-analysis aging for the entries and the over-
approximation of the cache contents, which ensures that never more entries will
be persistent than the cache can contain. Therefore none of the three memory
references is classified as persistent after the fixed-point is reached. Any access to
a, b or c might therefore be a miss, unlike the incorrect result that any of them can
only cause at most one miss by Ferdinand.

8.3 Discussion of Analysis Properties

8.3.1 Soundness

Overview

For our persistence analysis we consider caches using the LRU replacement policy.
We use the same characteristic of the LRU replacement semantics as in Section 7.3:
An memory block x is earliest evicted from a k-way LRU cache after k accesses to
different memory blocks.

Using this fact, the persistence classification as proposed in Definition 8.3 is sound,
if for the abstract set state s = (m,m̂) holds: If x ∈ m̂(li) at most i−1 further memory
blocks got loaded after the last reference to x on any path. In other words: if
memory block x is in the cache, its maximal age is i.

We will prove this by induction in three steps:

• Soundness of the initial abstract cache set state at the persistence scope
entry;

• Soundness of the abstract update function Upersmay ;

• Soundness of the abstract join function Jpersmay .

Initial State

At the entry of the persistence scope we start with an empty abstract set state.
As at the entry of the scope still no accesses have been done for any concrete
execution, this is safe.

70

8.3 Discussion of Analysis Properties

may m̂ay

∅ l1 ∅
∅ l2 ∅

l3 ∅

may m̂ay

{b} l1 {b}
∅ l2 ∅

l3 ∅

may m̂ay

{a} l1 {a}
∅ l2 ∅

l3 ∅

may m̂ay

{c} l1 {c}
∅ l2 ∅

l3 ∅

a

b

c

may m̂ay

{a,b,c} l1 {a,b,c}
∅ l2 ∅

l3 ∅

may m̂ay

{b} l1 {b}
{a,c} l2 {a,c}

l3 ∅

may m̂ay

{a} l1 {a}
{b,c} l2 {b,c}

l3 ∅

may m̂ay

{c} l1 {c}
{a,b} l2 {a,b}

l3 ∅

a

b

c

may m̂ay

{a,b,c} l1 ∅
∅ l2 {a,b,c}

l3 ∅

may m̂ay

{a,b,c} l1 ∅
∅ l2 {a,b,c}

l3 ∅

may m̂ay

{b} l1 {b}
{a,c} l2 ∅

l3 {a,c}

may m̂ay

{a} l1 {a}
{b,c} l2 ∅

l3 {b,c}

may m̂ay

{c} l1 {c}
{a,b} l2 ∅

l3 {a,b}

a

b

c

may m̂ay

{a,b,c} l1 ∅
∅ l2 ∅

l3 {a,b,c}

may m̂ay

{b} l1 {b}
{a,c} l2 ∅

l3 {a,c}

may m̂ay

{a} l1 {a}
{b,c} l2 ∅

l3 {b,c}

may m̂ay

{c} l1 {c}
{a,b} l2 ∅

l3 {a,b}

a

b

c

may m̂ay

{a,b,c} l1 ∅
∅ l2 ∅

l3 {a,b,c}

Figure 8.2: Fixed point iteration for the may-based persistence analysis for the
switch loop example (Figure 5.3): After four rounds, the fixed point
is reached. The memory references to a, b and c are not classified as
persistent. All three memory blocks might be evicted during the loop.

71

8 May Analysis Based Cache Persistence Analysis

Update Function

Given the input abstract set state s = (m,m̂) for the update function Upersmay for a
memory reference to the memory block x at program point p.

For s = (m,m̂) holds:

• For any memory block y, ∃li : y ∈m(li) means if y is in the cache, then its age
is i or larger, and @li : y ∈m(li) means y is not in the cache.

• For any memory block y, ∃li : i ≤ A∧y ∈ m̂(li) means if y is in the cache, then
its age is i or less, and @li : y ∈ m̂(li) means y has not been referenced so far.

The update function Upersmay now considers two cases for updates to m̂:

• mayevict(m,x) is true: This is the case if the may analysis abstract cache set
contains at least associativity A many other memory blocks than x. In this
situation, an reference to x may lead to an eviction in an LRU cache set, as
the set may be already completely filled. Therefore the update function will
increase the potential maximal ages of all memory blocks in m̂. x itself will
be set to age l1.

• mayevict(m,x) is false: This is the case if the may analysis abstract cache set
contains less than associativity A many other memory blocks than x. The
cache set is therefore still not full, no evictions can happen by loading x.
Therefore the maximal ages of all memory blocks in m̂ are only increased up
to the age lA, the highest possible age that may be in the cache. x itself will
be set to age l1.

Therefore m̂ will still map all memory blocks to their maximal ages after the
update.

In parallel the safe update function for the may analysis as shown in Definition 3.18
will be applied to m for an reference to x.

Join Function

Given the two abstract set states s = (m,m̂) and s = (m′, m̂′) as input for the join
function Jpersmay for some control-flow join of two paths at program point p. s and
s′ are safe for the individual paths.

The join function will use the safe may analysis join function as shown in Defi-
nition 3.18 for the join of m and m′. The join for the m̂ and m̂′ is equivalently

72

8.4 Precision Improvements

defined, but will maximize the ages. By construction the result is then safe for
both paths.

8.3.2 Termination

As the number of different referenced memory blocks inside a program is finite,
the abstract domain is finite, too. Therefore the termination of the analysis is
guaranteed by the monotonicity of the abstract update Upersmay and join function
Jpersmay for the persistence sets.

8.4 Precision Improvements

In Section 7.5 two cases of imprecision in the set-wise conflict counting cache
persistence analysis and the improvements by the element-wise conflict counting
cache persistence analysis are demonstrated. We now review these cases for the
may-based analysis.

8.4.1 Precision for unrolled loops

For the set-wise conflict counting cache persistence analysis it was not possible to
classify any memory references inside the example from Figure 6.3 as persistent
after one iteration. The element-wise conflict counting cache persistence analysis
improved this and allowed to classify all memory references as persistent, which
is the optimal case. In Figure 8.3 we show the fixed point iteration for this analysis.
As a never leaves the may analysis set, the may-based persistence analysis allows
possible evictions of b and c. Unlike the conflict counting per set analysis, this
analysis will find the first evictions in the fourth round instead in the second
round. Still, the fixed point result will not allow any memory references to be
classified as persistent, which is a step back compared to the element-wise conflict
counting analysis, which allows no evictions at all.

8.4.2 Precision for inner-iteration persistence

The other precision problem for the set-wise conflict counting was the innerPersis-
tenceLoop as shown in Figure 6.5. Figure 8.4 shows the fixed point iteration for the

73

8 May Analysis Based Cache Persistence Analysis

may m̂ay

∅ l1 ∅
∅ l2 ∅

l3 ∅

may m̂ay

{a} l1 {a}
∅ l2 ∅

l3 ∅

a

may m̂ay

{b} l1 {b}
{a} l2 {a}

l3 ∅

may m̂ay

{c} l1 {c}
{a} l2 {a}

l3 ∅

b

c

may m̂ay

{b,c} l1 {b,c}
{a} l2 {a}

l3 ∅

may m̂ay

{b} l1 {b}
{a,c} l2 {c}

l3 {a}

may m̂ay

{c} l1 {c}
{a,b} l2 {b}

l3 {a}

b

c

may m̂ay

{b,c} l1 ∅
{a} l2 {b,c}

l3 {a}

may m̂ay

{b,c} l1 ∅
{a} l2 {b,c}

l3 {a}

may m̂ay

{b} l1 {b}
{a,c} l2 ∅

l3 {a,c}

may m̂ay

{c} l1 {c}
{a,b} l2 ∅

l3 {a,b}

b

c

may m̂ay

{b,c} l1 ∅
{a} l2 ∅

l3 {a,b,c}

may m̂ay

{b} l1 {b}
{a,c} l2 ∅

l3 {a,c}

may m̂ay

{c} l1 {c}
{a,b} l2 ∅

l3 {a,b}

b

c

may m̂ay

{b,c} l1 ∅
{a} l2 ∅

l3 {a,b,c}

Figure 8.3: Fixed point iteration for the may-based persistence analysis for the
example in Figure 6.3: After four rounds, the fixed point is reached.
The memory references to b and c are classified as not persistent.

may-based analysis. Like the element-wise conflict counting analysis all memory
references can be classified as persistent.

8.5 Benchmarking

Overview In Table 8.1 the results for the may-based persistence analysis for our
benchmark scenarios from Section 6.6 are shown. The percentage of persistent
classified memory references for the different scenarios are illustrated in Figure 8.5.
For comparison the results for the previous two conflict counting analyses are
included.

74

8.5 Benchmarking

may m̂ay

∅ l1 ∅
∅ l2 ∅

l3 ∅

may m̂ay

{a} l1 {a}
∅ l2 ∅

l3 ∅

may m̂ay

{b} l1 {b}
∅ l2 ∅

l3 ∅

a

b

may m̂ay

{a,b} l1 {a,b}
∅ l2 ∅

l3 ∅

may m̂ay

{c} l1 {c}
{a,b} l2 {a,b}

l3 ∅

c

may m̂ay

{a} l1 {a}
{c} l2 {c}

l3 {b}

may m̂ay

{b} l1 {b}
{c} l2 {c}

l3 {a}

a

b

may m̂ay

{a,b} l1 ∅
{c} l2 {c}

l3 {a,b}

Figure 8.4: Analysis for one round of the innerPersistenceLoop loop example (Fig-
ure 6.5). The memory references to a and b are classified as persistent.

Review of the Scenarios Scenario1 only accesses associativity different memory
blocks. The may-based analysis classifies all memory references as persistent, like
the two previous analyses. For all other scenarios, it shows the same weakness
as the conflict counting per set analysis. Like the conflict counting per set, the
may analysis will not recover from overfull sets and this leads to less persistence
classifications. Only for the analysis runs, for which the may analysis set contains
only the memory blocks accessed at the end, any persistent classifications are
possible there. Unlike both previous analyses, the may-based analysis starts to
evict memory blocks later during the unrolled iterations. This precision gain is
visible in all testing scenarios.

Conclusion The results show, that the may-based persistence analysis performs
well during the unrolled loop iterations. Tracking the maximal ages of the memory
blocks in the set leads to less early evictions. But, unlike the conflict counting
per set analysis, the may-based analysis doesn’t perform well if the set was ever
overfull.

For our benchmarking scenarios, the may-based persistence is always at least as
precise as the simpler conflict counting per set. In comparison with the conflict
counting per element, more precision is achieved in the unrolled iterations. The
conflict counting per element is more precise, as it recovers better from overfull
set situations.

75

8 May Analysis Based Cache Persistence Analysis

Unrolled Iterations Last Not-Unrolled Iteration

References Pers. Pers. % References Pers. Pers. %

scenario1 19998 19998 100.00% 19998 19998 100.00%

scenario2 209979 68821 32.78% 29997 0 0.00%

scenario3 25004 25004 100.00% 19998 13125 65.63%

scenario4 349706 152581 43.63% 39996 4 0.01%

scenario5 420025 420025 100.00% 79992 0 0.00%

scenario6 1199585 419424 34.96% 79992 0 0.00%

scenario7 699808 332928 47.57% 79992 2 0.00%

scenario8 419714 178644 42.56% 49995 2457 4.91%

scenario9 699967 363162 51.88% 99990 5361 5.36%

scenario10 1199472 419669 34.99% 119988 5825 4.85%

scenario11 1120730 495222 44.19% 139986 18821 13.44%

Table 8.1: Benchmark results for the may-based persistence analysis.

8.6 Summary

In this chapter, we introduced a may cache analysis based persistence analysis.
The goal was to not evict memory blocks too early, even if the cache set becomes
overfull.

Whereas this goal was reached, the may-based analysis doesn’t always have as
precise results as the element-wise conflict counting persistence analysis. It suffers
from the same problem as the set-wise conflict counting persistence analysis. If
the may cache set is once overfull during analysis, it doesn’t recover well.

In the next chapter we will introduce a combination of this analysis and the
element-wise conflict counting to overcome this limitation.

76

8.6 Summary

Pers.

50%

100%

150%

200%

sc
en

ar
io1

sc
en

ar
io2

sc
en

ar
io3

sc
en

ar
io4

sc
en

ar
io5

sc
en

ar
io6

sc
en

ar
io7

sc
en

ar
io8

sc
en

ar
io9

sc
en

ar
io1

0

sc
en

ar
io1

1

set-wise conflict counting, persistent memory references (%), unrolled iteration

set-wise conflict counting, persistent memory references (%), fixed point

element-wise conflict counting, persistent memory references (%), unrolled iteration

element-wise conflict counting, persistent memory references (%), fixed point

may-based, persistent memory references (%), unrolled iteration

may-based, persistent memory references (%), fixed point

Figure 8.5: Comparison of analyses precision for different synthetic benchmark
scenarios and persistence analyses.

77

CHAPTER9
Age-Tracking Conflict Counting

Persistence Analysis

9.1 Introduction of the Analysis

In Chapter 6 we have shown the basic idea of the set-wise conflict counting cache
persistence analysis. Whereas this analysis yields sound results, it has some
imprecisions as shown in Section 6.5.

We then introduced two more precise analyses to overcome this imprecision:

• A element-wise conflict counting persistence analysis in Chapter 7, that
performed much better for our benchmarks during the fixed point.

• A may-based persistence analysis in Chapter 8, that performed better for
our benchmarks during the unrolled iterations.

The precision improvements for both of these analyses stem from:

• The conflict per element analysis keeps track of a conflict set per accessed
element. This allows the analysis to recover, if during the unrolled iterations
an overfull cache set occurs, but the inside the remaining iterations that are
not unrolled all elements fit into the cache set again.

• The may-based analysis keeps track of the maximal ages of the accessed
elements. This avoids early evictions, if the set becomes overfull but there are
not enough accesses to actually trigger an eviction during concrete execution.

These behaviors are confirmed by the results of the benchmarking scenarios in
Section 7.6 and Section 8.5.

79

9 Age-Tracking Conflict Counting Persistence Analysis

We now design an analysis that combines both precision increasing components:
conflict counting and maximal age tracking per element.

We reuse the abstract domain of the conflict counting per element analysis and
extend it with an upper bound of the element age.

Definition 9.1 (Abstract Set Domain – Age-Tracking Conflict Counting)
The abstract domainDpersca of the age-tracking conflict counting persistence analysis
for one cache set with associativity A is a mapping from memory blocks to maximal ages
A = {0..A} and potential conflict sets M→ 2M . It is defined as Dpersca :=M→A× 2M .

Definition 9.2 (Set Update and Join – Age-Tracking Conflict Counting)
The abstract update function Upersca :Dpersca ×M→Dpersca and join function Jpersca :
Dpersca ×Dpersca →Dpersca of the age-tracking conflict counting persistence analysis
are defined as:

Upersca(m,x) =

[x 7→ (0,Uperscs(∅,x)),
y 7→ (min(age+ 1,A),Uperscs(m(y),x))

with (age, set) =m(x) | y , x∧m(y) , (0,∅)
y 7→ (0,∅) | y , x∧m(y) = (0,∅)];

Jpersca(m,m
′) = [x 7→ (max(age,age′), Jperscs(set, set

′)

with (age, set) =m(x)∧ (age′, set′) =m′(x))];

They reuse the abstract update function Uperscs and join function Jperscs of the set-wise
conflict counting persistence analysis as shown in Definition 6.2.

If the program references a memory block x ∈M we ensure that we update its
conflict counting set and reset its upper age bound to 0, as it is now the latest
memory block in the cache set. Given the definition of the Uperscs function, this
ensures we have at least x itself inside this set afterwards. For all other memory
blocks y ∈M∧y , x, we only update the individual conflicting sets if y was already
accessed, i.e. the set for y is not empty. For these memory blocks, we increment
the age bound up to the maximum of A, which means potentially evicted.

Definition 9.3 (Persistence – Conflict Counting with Aging)
For a given abstract set state m of a cache set with associativity A, a memory reference
to x ∈M is persistent iff age < A∨ |set| ≤ A for (age, set) =m(x).

80

9.2 Application to the Examples

9.2 Application to the Examples

9.2.1 if-then-else Loop

Figure 9.1 shows the analysis on the if-then-else example, for which it computes
the same results as both element-wise conflict counting and may-based analyses.
As for the other analyses, this analysis start with an empty persistence set at the
loop entry. Then the set is updated for either a or b in parallel and the resulting sets
are joined afterwards. As the computed conflict sets for all memory blocks contain
not more entries than the associativity of the cache, both memory references are
classified as persistent and therefore each of them can only cause at most one
miss.

persca
a (0,∅)
b (0,∅)

persca
a (0, {a})
b (0,∅)

persca
a (0,∅)
b (0, {b})

a

b

persca
a (0, {a})
b (0, {b})

persca
a (0, {a})
b (1, {a,b})

persca
a (1, {a,b})
b (0, {b})

a

b

persca
a (1, {a,b})
b (1, {a,b})

persca
a (0, {a})
b (2, {a,b})

persca
a (2, {a,b})
b (0, {b})

a

b

persca
a (2, {a,b})
b (2, {a,b})

persca
a (0, {a})
b (2, {a,b})

persca
a (2, {a,b})
b (0, {b})

a

b

persca
a (2, {a,b})
b (2, {a,b})

Figure 9.1: Fixed point iteration for the age-tracking conflict counting persistence
analysis for the if-then-else loop example (Figure 4.1): After four
rounds, the fixed point is reached. The memory references to a and b
are classified as persistent.

9.2.2 switch Loop

The more complex example with three memory references is presented in Fig-
ure 9.2. Like the element-wise conflict counting, this analysis computes a fixed
point result that allows none of the three memory references to be classified as
persistent. But with the age tracking, the analysis can classify all memory refer-
ences in the first three iterations as persistent, unlike simple conflict counting.
This will allow for a more precise analysis if we unroll the loop, as only one miss
per memory block is allowed in the first three iterations, which is the optimal
result. Only beginning with the fourth round more misses are possible. This is as
precise as the result of the may-based analysis.

81

9 Age-Tracking Conflict Counting Persistence Analysis

persca
a (0,∅)
b (0,∅)
c (0,∅)

persca
a (0,∅)
b (0, {b})
c (0,∅)

persca
a (0, {a})
b (0,∅)
c (0,∅)

persca
a (0,∅)
b (0,∅)
c (0, {c})

a

b

c

persca
a (0, {a})
b (0, {b})
c (0, {c})

persca
a (1, {a,b})
b (0, {b})
c (1, {b,c})

persca
a (0, {a})
b (1, {a,b})
c (1, {a,c})

persca
a (1, {a,c})
b (1, {b,c})
c (0, {c})

a

b

c

persca
a (1, {a,b,c})
b (1, {a,b,c})
c (1, {a,b,c})

persca
a (1, {a,b,c})
b (1, {a,b,c})
c (1, {a,b,c})

persca
a (2, {a,b,c})
b (0, {b})
c (2, {a,b,c})

persca
a (0, {a})
b (2, {a,b,c})
c (2, {a,b,c})

persca
a (2, {a,b,c})
b (2, {a,b,c})
c (0, {c})

a

b

c

persca
a (2, {a,b,c})
b (2, {a,b,c})
c (2, {a,b,c})

persca
a (2, {a,b,c})
b (0, {b})
c (2, {a,b,c})

persca
a (0, {a})
b (2, {a,b,c})
c (2, {a,b,c})

persca
a (2, {a,b,c})
b (2, {a,b,c})
c (0, {c})

a

b

c

persca
a (2, {a,b,c})
b (2, {a,b,c})
c (2, {a,b,c})

Figure 9.2: Fixed point iteration for the age-tracking conflict counting persistence
analysis for the switch loop example (Figure 5.3): After four rounds,
the fixed point is reached. None of the memory references to a, b and c
are classified as persistent.

82

9.3 Discussion of Analysis Properties

9.3 Discussion of Analysis Properties

9.3.1 Soundness

Overview

The persistence classification as proposed in Definition 9.3 contains two cases.

An memory references to the memory block x is persistence, for the abstract set
state m of an k-way associative cache, iff:

• age < k or

• |set| ≤ k

with (age, set) =m(x).

The conflicts sets for each memory block inside the abstract set state is updated
like for the conflict counting per set analysis introduced in Chapter 7. The same
soundness proof as shown in Section 7.3 holds for this part of the persistence
definition of this analysis.

To ensure the soundness of the above definition, we must ensure that the age < k
case allows for a sound persistence classification.

For our persistence analysis we consider caches using the LRU replacement policy.
Like in Section 6.3 we use a characteristic of the LRU replacement semantics as
defined in Section 3.3.2: A memory block x is earliest evicted from a k-way LRU
cache after k accesses to different memory blocks.

Using this fact, the persistence classification is sound, if for the abstract set state
m holds: age is an upper bound for the age of a memory block x potentially in the
cache, with (age, set) =m(x).

We will prove this by induction in three steps:

• Soundness of the initial abstract cache set state at the persistence scope entry

• Soundness of the abstract update function Upersca

• Soundness of the abstract join function Jpersca

83

9 Age-Tracking Conflict Counting Persistence Analysis

Initial State

At the entry of the persistence scope the analysis starts with an abstract set state
m = [x to(0,∅) | ∀x ∈M];. As at the entry of the scope still no accesses are done for
any concrete execution, the age 0 is a valid upper bound of the age of the memory
blocks loaded since start of the persistence scope in the cache.

Update Function

Given the input abstract set state m for the update function Upersca for a memory
reference to the memory block x at program point p.

The update function will modify m in the following ways:

• It will reset the age of x itself to 0. As we just have accessed x, this is a correct
upper bound of the age of x.

• For all other m(y) | y ∈M with y , x there are two cases:

– m(y) = (0,∅): As m(y) is an over-approximation, this means, y is not
loaded in the cache since the start of the scope, as the conflicting set
is still empty. Therefore we don’t need to increase the age 0, as y isn’t
in the cache. This holds because ∅ is only possible, if y was not loaded
already, see proof in Section 7.3.

– m(y) , (0,∅): The age of y will be increased. Given LRU replacement,
this is a safe upper bound of the age of y after the access to x.

Therefore the update function results in a sound over-approximation after pro-
gram point p with safe upper age bounds.

Join Function

Given the two abstract set states m and m′ as input for the join function Jpersca for
some control-flow join of two paths at program point p. For all x ∈M (age, set) =
m(x) and (age′, set′) =m′(x) are upper bounds of the ages and over-approximations
of the loaded memory blocks that conflict with x on the individual paths.

As the join function is the set union for the individual set and set′ for all x ∈M,
the result of the join will be an over-approximation of the loaded memory blocks
that conflict with x for both paths, as proven in Section 7.3. As the join function

84

9.4 Analysis Space-Optimization

will maximize age and age′ of the element x, the same holds for the resulting age,
it still is an upper bound for both paths.

9.3.2 Termination

As the number of different referenced memory blocks inside a program is finite,
the abstract domain Dpersca =M→A× 2M is finite, too. Therefore the termination
of the analysis is guaranteed by the monotonicity of the abstract update Upersca
and join function Jpersca for the persistence sets.

9.4 Analysis Space-Optimization

We can apply the same optimization as described in Section 6.4. As the cache
associativity is constant for the analysis, the space complexity per set is reduced
from O(n2) to O(n) if the program references n different elements inside the
persistence scope.

Definition 9.4 (Optimized Set Update and Join – Age-Tracking Conflict Counting)
The abstract update function Upersca_optimized and join function Jpersca_optimized for the
space-optimized variant are defined as:

Uperscaoptimized
(m,x) =

[x 7→ (0,Uperscsoptimized (∅,x)),

y 7→ (min(age+ 1,A),Uperscsoptimized (m(y),x))

with (age, set) =m(x) | y , x∧m(y) , (0,∅)
y 7→ (0,∅) | y , x∧m(y) = (0,∅)];

Jperscaoptimized
(m,m′) = [x 7→ (max(age,age′), Jperscsoptimized (set, set′)

with (age, set) =m(x)∧ (age′, set′) =m′(x))];

9.5 Precision Improvements

In Section 6.5 two cases of imprecision in the conflict counting per set analysis are
demonstrated. We now review these cases for the improved conflict counting with
aging analysis.

85

9 Age-Tracking Conflict Counting Persistence Analysis

9.5.1 Precision for unrolled loops

For the set-wise conflict counting analysis it was not feasible to classify any
memory references inside the example from Figure 6.3 as persistent after one
iteration, whereas in practice neither b nor c will never be evicted. In Figure 9.3
we show the fixed point iteration for this analysis. Like the element-wise conflict
counting analysis, this analysis is able to classify the memory references to b and
c as persistent for all iterations. Only a will be possibly evicted after the first
iteration.

persca
a (0,∅)
b (0,∅)
c (0,∅)

persca
a (0, {a})
b (0,∅)
c (0,∅)

a

persca
a (1, {a,b})
b (0, {b})
c (0,∅)

persca
a (1, {a,c})
b (0,∅)
c (0, {c})

b

c

persca
a (1, {a,b,c})
b (0, {b})
c (0, {c})

persca
a (2, {a,b,c})
b (0, {b})
c (1, {b,c})

persca
a (2, {a,b,c})
b (1, {b,c})
c (0, {c})

b

c

persca
a (2, {a,b,c})
b (1, {b,c})
c (1, {b,c})

persca
a (2, {a,b,c})
b (1, {b,c})
c (1, {b,c})

persca
a (2, {a,b,c})
b (0, {b})
c (2, {b,c})

persca
a (2, {a,b,c})
b (2, {b,c})
c (0, {c})

b

c

persca
a (2, {a,b,c})
b (2, {b,c})
c (2, {b,c})

persca
a (2, {a,b,c})
b (0, {b})
c (2, {b,c})

persca
a (2, {a,b,c})
b (2, {b,c})
c (0, {c})

b

c

persca
a (2, {a,b,c})
b (2, {b,c})
c (2, {b,c})

Figure 9.3: Fixed point iteration for the age-tracking conflict counting analysis for
the example in Figure 6.3: After two rounds, the fixed point is reached.
The memory references to b are classified as persistent.

86

9.6 Benchmarking

9.5.2 Precision for inner-iteration persistence

The other precision problem for the set-wise conflict counting was the innerPersis-
tenceLoop as shown in Figure 6.5. Figure 9.4 shows the fixed point iteration for this
analysis. Like both the may-based and element-wise conflict counting analyses,
all memory references are classified as persistent.

persca
a (0,∅)
b (0,∅)
c (0,∅)

persca
a (0, {a})
b (0,∅)
c (0,∅)

persca
a (0,∅)
b (0, {b})
c (0,∅)

a

b

persca
a (0, {a})
b (0, {b})
c (0,∅)

persca
a (1, {a,c})
b (1, {b,c})
c (0, {c})

c

persca
a (0, {a})
b (2, {a,b,c})
c (1, {a,c})

persca
a (2, {a,b,c})
b (0, {b})
c (1, {b,c})

a

b

persca
a (2, {a,b,c})
b (2, {a,b,c})
c (1, {a,b,c})

Figure 9.4: Age-tracking conflict counting analysis for one round of the innerPer-
sistenceLoop loop example (Figure 6.5). The memory references to a
and b are classified as persistent.

9.6 Benchmarking

Overview In Table 9.1 the results for the age-tracking conflict counting per-
sistence analysis for our benchmark scenarios from Section 6.6 are shown. The
percentage of persistent classified memory references for the different scenarios
are illustrated in Figure 9.5. For comparison the results for the previous two
conflict counting analyses and the may-based analysis are included.

Review of the Scenarios By construction, the age-tracking conflict counting
persistence analysis is at least as precise as the element-wise conflict counting
and the may-based analyses. For the simple scenario1 all analyses are precise. All
memory references are persistent, as not more than associativity different memory
blocks are accessed. For all other scenarios, the age-tracking conflict counting
persistence analysis is the most precise one. It combines the better handling of

87

9 Age-Tracking Conflict Counting Persistence Analysis

the unrolled iterations by the age tracking of the may-based analysis with the
better recovery for overfull sets for unrolled iterations of the conflict counting per
element analysis.

Conclusion The results show that the novel age-tracking conflict counting com-
bines the precision of the two different approaches presented before:

• good handling of overfull sets during the unrolled iterations, by counting
the conflicts per element

• only allow evictions after the elements are old enough, by tracking upper
bounds for the element ages

Unrolled Iterations Last Not-Unrolled Iteration

References Pers. Pers. % References Pers. Pers. %

scenario1 19998 19998 100.00% 19998 19998 100.00%

scenario2 209979 72443 34.50% 29997 0 0.00%

scenario3 25004 25004 100.00% 19998 15633 78.17%

scenario4 349706 155188 44.38% 39996 15 0.04%

scenario5 420025 420025 100.00% 79992 39996 50.00%

scenario6 1199585 419428 34.96% 79992 79992 100.00%

scenario7 699808 333391 47.64% 79992 19998 25.00%

scenario8 419714 184908 44.06% 49995 2489 4.98%

scenario9 699967 373711 53.39% 99990 52510 52.52%

scenario10 1199472 419677 34.99% 119988 119988 100.00%

scenario11 1120730 516721 46.11% 139986 49276 35.20%

Table 9.1: Benchmark results for the age-tracking conflict counting persistence
analysis.

9.7 Summary

In this chapter we introduced a novel persistence analysis combining the benefits
of both the conflict counting and the may-based approach. The analysis not only

88

9.7 Summary

Pers.

50%

100%

150%

200%

sc
en

ar
io1

sc
en

ar
io2

sc
en

ar
io3

sc
en

ar
io4

sc
en

ar
io5

sc
en

ar
io6

sc
en

ar
io7

sc
en

ar
io8

sc
en

ar
io9

sc
en

ar
io1

0

sc
en

ar
io1

1

set-wise conflict counting, persistent memory references (%), unrolled iteration

set-wise conflict counting, persistent memory references (%), fixed point

element-wise conflict counting, persistent memory references (%), unrolled iteration

element-wise conflict counting, persistent memory references (%), fixed point

may-based, persistent memory references (%), unrolled iteration

may-based, persistent memory references (%), fixed point

age-tracking conflict counting, persistent memory references (%), unrolled iteration

age-tracking conflict counting, persistent memory references (%), fixed point

Figure 9.5: Comparison of analyses precision for different synthetic benchmark
scenarios and persistence analyses.

collects all possible conflicts per element but also tracks the possible maximal age
of each element.

The application to our imprecision examples and the evaluation in our bench-
marking framework show, that these combined techniques compute in the most
precise results.

In the next chapter, we will evaluate our new analysis inside a state-of-the-art
WCET analysis framework. We will implement the analysis for different target ar-
chitectures in the commercial aiT WCET analyzer and evaluate it on both academic
benchmarks and real-word software.

89

CHAPTER10
Practical Evaluation

In this chapter, we evaluate the novel persistence analyses on different hardware
architectures within the analysis framework of the aiT WCET analyzer. First we
briefly introduce the overall architecture of aiT and focus on the parts which need
adjustment for the cache persistence analysis. Then we introduce the different
architectures we have selected for the evaluation and why these architectures
are of general interest. Afterwards we describe the test setup and the different
programs which are used for the evaluation. This chapter is concluded with the
presentation and analysis of the results.

10.1 The aiT WCET Analyzer Framework

aiT is a commercial WCET analysis tool developed by AbsInt GmbH. The archi-
tecture of the aiT analyzer is shown in Figure 10.1. It follows a more or less stan-
dard architecture for timing-analysis tools [HWH95, TFW00, Erm03, FMC+07,
CFG+10]. aiT has been successfully used to determine precise bounds on execu-
tion times of real-time software [FW99, FHL+01, TSH+03, HLTW03, SLH+05]. We
will now briefly introduce the major parts of this framework and then focus on the
components which needs adjustments for the persistence analysis evaluation.

10.1.1 Control-flow Reconstruction

This phase identifies the instructions and their operands, and reconstructs the pro-
gram control-flow. The reconstructed control-flow is annotated with the informa-
tion needed by subsequent analysis phases and then translated into a control-flow
graph [The00, The02].

91

10 Practical Evaluation

Input
Executable

Control-flow
Reconstruction

Control-flow
Graph

Loop & Value
Analysis

Annotated
CFG

Block Times or
Prediction Graph

Cache & Pipeline
Analysis

Path
Analysis

Integer Linear
Problem

ILP
Solver

WCET &
WCET Path

Legend

Data

Phase

Figure 10.1: Components of the aiT framework and their interaction.

10.1.2 Loop & Value Analysis

This phase tries to determine the values in the processor registers and memory cells
for every program point and execution context [Sic97]. Often it cannot determine
these values exactly, but only finds safe lower and upper bounds, i.e. intervals that
are guaranteed to contain the exact values. In addition this phase computes lower

92

10.2 Cache & Pipeline Analysis

and upper bounds for loops inside the control-flow graph [CM07, HSR+00] and
additional flow-facts like information about never executed program paths.

10.1.3 Cache & Pipeline Analysis

The integrated cache and pipeline analysis classifies the memory references to
main memory and models the pipeline behavior to determine execution times
for all basic blocks in the individual analysis contexts. The analysis takes the
current pipeline state(s) into account, in particular resource occupancies, contents
of processor internal queues (prefetch, load and store), grouping of instructions,
and classification of memory references as cache hits or misses [Eng02, The04,
FW99].

10.1.4 Path Analysis

This last phase models the program’s control flow by an ILP [TFW00] so that the
solution to the objective function is the predicted worst-case execution time bound
for the input program. This ILP is then solved using one of the common optimized
MIP solvers, like the open source solver CBC from the COIN-OR project [LH03]
or CPLEX from ILOG.

10.1.5 Relevant Parts for Persistence Analysis

The interesting parts of the framework for the application of the cache persistence
analysis are the combined cache and pipeline analysis and the path analysis. The
cache and pipeline analysis incorporates the persistence cache analysis and the
path analysis is modified to add additional constraints into the generated ILP.

10.2 Cache & Pipeline Analysis

The pipeline analysis determines upper bounds of the execution times of basic
blocks performing an abstract interpretation of the program execution on the par-
ticular architecture, taking into account its pipeline, caches, memory buses, and
attached peripheral devices. By means of an abstract model of the hardware archi-
tecture, the pipeline analysis statically simulates the execution of each instruction.

93

10 Practical Evaluation

The integrated cache analysis provides safe approximations of the contents of the
caches at each program point using the must and may cache analyses.

Abstract states may lack information about the state of some processor compo-
nents, e.g., caches, queues, or predictors. Transitions of the pipeline may depend
on such missing information. This causes the abstract pipeline model to become
non-deterministic although the concrete pipeline is deterministic. When dealing
with this non-determinism, one could be tempted to design the WCET analysis
such that only the locally most expensive pipeline transition is chosen. However,
in the presence of timing anomalies [LS99, RWT+06, Geb10] this approach is un-
sound. Thus, in general, the analysis has to follow all possible successor states, it
will split for any possible successor [The04].

As a result of this splitting the pipeline analysis produces no linear execution trace
but a graph for all possible executions, the so-called prediction graph. Figure 10.2
shows a simple prediction graph part for two consecutive basic blocks a and b.
The pipeline analysis gets for block a one incoming state. Due to unknown cache
behavior it produces two outgoing states. The miss case takes 10 cycles, the hit
case two. The next block b then has these two states as input and computes two
output states, this time for the resulting state of the miss the processing time is
one and for the hit it is 10. Actually this is a timing anomaly, a case in which a
locally worst decision (assuming the miss with 10 cycles) will lead to an overall
shorter execution time of 11 cycles, shorter than the locally best decision, the hit
case, with overall 12 cycles.

Block a Block b

10 miss

2 hit

1

10

Figure 10.2: Small snippet of a prediction graph: Two subsequent basic blocks a
and b and their internal state graph created by the pipeline analysis.

Two different outputs for the subsequent path analysis are available:

The Basic Block Times The pipeline analysis performs abstract simulation inter-
nally and follows all possible paths in the prediction graph for an individual
basic block, but only outputs the upper bound of the execution time of the
block to the path analysis. For the example in Figure 10.2 this would be ten
cycles for each of the two basic blocks.

94

10.3 Path Analysis

The Prediction Graph The pipeline analysis outputs the whole computed pre-
diction graph to allow the path analysis to incorporate it into the overall
control flow graph for the ILP. For the example in Figure 10.2 this means
that the relation between the different states is kept and that therefore a
global bound of 12 can be determined.

Only the prediction graph allows the path analysis to build additional constraints
for the number of cache misses as required by the persistence analysis. The
pipeline analysis annotates the prediction graph not only if it assumed a miss
or hit, but also if the corresponding cache line was classified as persistent. This
information will be used by the path analysis to build an optimized ILP.

10.3 Path Analysis

There are different kinds of path analyses available in aiT, the normal ILP based
path analysis on basic block level and the ILP based path analysis on the prediction
graph. Both construct an ILP to represent the control flow and use the output of
the pipeline analysis as coefficients.

The normal ILP based path analysis works on the granularity of basic blocks and
uses the maximal basic block timings computed by the pipeline analysis. It was
introduced by Theiling [The02] and is used successfully in practice with quite
precise results, for example for avionics software [TSH+03].

Unfortunately its level of granularity does not allow to express additional con-
straints like the number of allowed misses on the WCET path, as only constraints
on block level are possible and both hits and misses can happen inside one block
(see Figure 10.2).

Therefore the novel ILP based path analysis on the prediction graph is used to
integrate the persistence analysis. This path analysis is based on the master thesis
of Matthies [Mat06] that introduced a path analysis on the prediction graph for
the special case of an acyclic graph. It was designed to increase the precision by
honoring inter-leavings over basic block boundaries in the path analysis.

For the example snippet in Figure 10.2 the prediction graph based path analysis
would not assume an execution time of 10 cycles per block which results in 20
cycles for both blocks. Instead it constructs an ILP that honors the possible
state transitions and allows only a maximal execution time of overall 12 cycles
for the complete snippet. This concept was extended during development of
the novel persistence analysis to handle cyclic graphs by using the concepts of

95

10 Practical Evaluation

Theiling [The02] to add additional constraints to the ILP to bound loops and
recursions.

For each persistence scope the path analysis will create additional constraints in the
ILP to restrict the amount of misses for all persistent memory references to the same
memory block to at most one miss per entering of the scope. This is the usage of
the persistence constraint as formulated in Theorem 4.2.

For the example of Figure 4.1 this would mean that the following two constraints
for persistent memory references to memory blocks a and b will be added:∑

misses(persistentReferences(a)) ≤ 1∑
misses(persistentReferences(b)) ≤ 1

These additional constraints will restrict the WCET path computed by the ILP
solver to only allow paths which have at most one miss for these two cache lines
and to cut away all other paths that would lead to over-estimations because of
unnecessary memory accesses to reload the cache lines.

10.4 Selection of Architectures

The chosen WCET analysis framework aiT supports a wide range of very different
embedded hardware architectures. For the selection of interesting architectures
we both consider a state-of-the-art classification of architectures with respect to
timing analysis and their use in the current academic and industrial community.
Based on this, we select the aiT WCET analyzer for the ARM7, MPC5554 and
MPC755 architectures.

10.4.1 Classification of Architectures

In respect to timing analysis there exists a widely used classification of architec-
tures by Wilhelm et al. [WGR+09]:

Fully timing compositional architectures The (abstract model of an) architec-
ture does not exhibit timing anomalies. Hence, the analysis can safely follow
local worst-case paths only.

96

10.4 Selection of Architectures

Compositional architectures with constant-bounded effects The architecture
exhibit timing anomalies but no domino effects. In general, an analysis has
to consider all paths. To trade precision with efficiency, it would be possible
to safely discard local non-worst-case paths by adding a constant number of
cycles to the local worst-case path [RS09].

Non-compositional architectures The architecture exhibit domino effects and
timing anomalies. For such architectures timing analyses always have to
follow all paths since a local effect may influence the future execution arbi-
trarily.

Our three selected architecture spread over all three classifications:

Fully timing compositional architectures The ARM7 is the classical example for
such an architecture.

Compositional architectures with constant-bounded effects The MPC5554 is
assumed to belong to this class, if certain hardware features are configured
correctly, to avoid known domino effects because of the used cache replace-
ment strategies. The instruction and data cache with Pseudo-RoundRobin
replacement must be locked down to one way and the flash buffer and BTB
with FIFO replacement must be deactivated.

Non-compositional architectures The MPC755 is such an architecture, as it
exibits at least one known domino effect because of its imbalanced integer
units [Sch03].

10.4.2 Relevance in Practice

ARM7 TDMI The ARM7 is widely-used in the academic world, as ARM7 evaluation
hardware is cheap and there exist cycle accurate software simulators like the
MPARM simulator [BBB+05].

Freescale MPC5554 The MPC5554 is a modern state-of-the-art architecture de-
signed for the automotive & avionics industry. Is is widely used in both
fields, even in the hard-realtime avionics domain.

Freescale MPC755 The MPC755 is a high-performance architecture used in
safety-critical avionics systems, like the Airbus A380 [SLH+05]. Whereas
the MPC755 was not designed to be used for hard-realtime systems, the
performance demands of current control-software required an architecture
with its performance.

97

10 Practical Evaluation

10.5 Test Selection & Hardware Setup

10.5.1 ARM7 TDMI Tests

The ARM7 is configured with separated 4 KB 4-way associative instruction and
data caches with LRU replacement policy.

As evaluation tests we will use:

Our Running Examples We will use the small examples from the previous chap-
ters. The persistent if-then-else loop construct ifelse (Figure 4.1), the switch
statement that leads to evictions switch (Figure 5.3) and the loop that has a
different behavior in the first iteration prefix (Figure 6.3). They are analyzed
with two settings, without unrolling and with loop unrolling (the unrolled
examples have the _u suffix).

WCET Benchmarks We analyze a subset of the well-known WCET Benchmarks
from Mälardalen university [GBEL10].

10.5.2 Freescale MPC5554 Tests

The MPC5554 features 32 KB instruction cache with Pseudo-RoundRobin replace-
ment policy. To make it analyzable it is locked down to one way, resulting in an 4
KB direct mapped cache.

We use 20 code examples that are derived from real avionic applications. For
example they feature error and message handling, complex state machines and
include both hand written and generated code.

10.5.3 Freescale MPC755 Tests

The MPC755 features seperated 32 KB instruction and data caches with PLRU
replacement policy. To make it analyzable, the instruction cache is locked down
to two ways, resulting in an effective instruction cache size of 8 KB with LRU
replacement. The data cache is locked down to 16 KB as one half is used as stack
space.

Like for the MPC5554, our code examples are derived from real avionic applica-
tions. We will analyze two different categories of tasks:

98

10.6 Test Setup

755_avionics1 .. 755_avionics10 Smaller tasks with below 16 KB code size.
Most of them can fully fit into the 8 KB instruction cache.

755_avionics11 .. 755_avionics20 Larger tasks with over 32 KB code size. As
here overful cache sets occur more often, the precision of the different
persistence analyses can be evaluated.

10.6 Test Setup

The following different analysis settings are used for the tests:

S1: ILP Based Normal aiT analysis, no persistence, normal ILP based path analy-
sis on basic block level, using only the basic block timings.

S2: Prediction Graph Normal aiT analysis, no persistence, ILP based path analy-
sis on the prediction graph, using the more granular prediction graph.

S3: Persistence aiT analysis with persistence, ILP based path analysis on the
prediction graph and automatic additional persistence constraints. The
persistence scopes for the most examples are automatically generated by
an analysis that determines if a loop or recursion may contain control flow
which is interesting for persistence analysis (e.g., if-then-else or switch
like structures). This analysis is integrated into the aiT framework and
is performed before the cache and pipeline analysis which then uses the
generated persistence scopes. Therefore, there is normally no need for
manual annotations. Additional manual scope selection can increase the
precision further. For the real-world tasks, manually persistence scopes were
selected to include the outermost loops.

There are no comparisons with the original persistence analysis by Ferdinand,
as its results are not conservative (see Section 5.3) and no implementation for a
comparable aiT version is available.

The tests are performed on a Linux workstation featuring an Intel Core i5 processor
and 8 GB of RAM.

10.7 Test Results

We present the test results for the different architectures in two variants:

99

10 Practical Evaluation

• As tables containing the computed WCET estimate and analysis runtime for
the different analysis settings and improvement of the different settings over
setting S1.

• As figures highlighting the precision differences for the computed WCET
estimate between the different analysis settings.

The results for the ARM7 architecture can be found in Tables 10.1 & 10.2 and
Figure 10.3. As for this fully timing-compositional architecture there is no difference
in the analysis precision and runtime between S1 and S2, we only provide results
for S1.

The MPC5554 results are presented in Tables 10.3 & 10.4 and Figure 10.4.

The MPC755 results are shown in Tables 10.5 & 10.6 and Figure 10.5.

10.8 Discussion of the Results

10.8.1 ARM7 TDMI - Synthetic and WCET Benchmarks

The synthetic benchmarks for the ARM7 show that the persistence analyses behave
as described in the previous sections. The if-then-else loop construct (Figure 4.1)
is classified as persistent, independent of the chosen loop unrolling. The switch
loop (Figure 5.3) causes evictions for the accessed data elements but still benefits
from instruction cache persistence. The conflict couting with aging analysis here
has a benefit if we unroll the loop, as it doesn’t evict elements in the first iterations.
The loop which has different behavior inside the first iteration (Figure 6.3) benefits
from the age tracking, too, as described in Section 9.5.

Similar results are obtained for the WCET Benchmarks. If the instruction or data
sets fit into the cache, both persistence analyses perform equally well. If there can
be evictions, the conflict couting with aging analysis performs better, as evictions
are delayed for unrolled loops and the analysis tracks the conflicts per element.
The improvements vary for the benchmarks because for many memory references
the may and must analyses already provide exact classifications.

In average, the age-tracking conflict counting persistence analysis allows a precision
gain of around 38% over the original ILP method for the chosen synthetic and
WCET benchmarks.

100

10.8 Discussion of the Results

The analysis run times for the ARM7 tests are all very low, as the tests are rather
small, and the analysis for this architecture is not complex. For most tests the
difference in runtime between the different analyses is not measurable.

10.8.2 Freescale MPC5554 & MPC755 - Avionics Benchmarks

For the MPC5554 there is already a gap of several percent between basic-block
and prediction-graph based path analysis. This is the result of the more complex
interleaving of memory accesses caused by performance features like branch
prediction and store buffers.

For the very complex MPC755 there is a relatively big gap between both path
analyses of up to 20% of the computed WCET bound. This is a result of the non-
compositionality of this architecture which leads to effects spanning multiple basic
blocks. The MPC755 features speculative execution and many parallel execution
units and internal queues that lead to this high amount of interleaving.

Whereas the normal ILP based path analysis on basic block level only takes into
account the upper bounds of the execution time per block, the analysis based on
the prediction graph has the full pipeline state graph to exclude paths not possible
between different basic blocks.

The persistence analysis for the selected examples further reduces the calculated
WCET bound.

For the avionics test cases, the code includes similar constructs but not as promi-
nently on the WCET path as in the synthetic examples, therefore the gain in
precision is less visible. Still, the analysis produces a clear improvement on top of
the gain by the novel prediction based path analysis. The typical code patterns
that appear in the used fly-by-wire and avionics control software and benefit by
the persistence analyses are instances of the fault handling and data dependent
algorithms as presented in Section 4.3. In addition some analyzed tasks contain
state machine code generated by SCADE or hand written state machines, with
a similar structure as described in [SLH+05]. The variance in the percentage
of improvements results in the different distribution of such constructs in the
program and respectively their weight on the worst-case path.

For the MPC5554 benchmarks, beside some tight loops, there is mostly linear code
with little locality [SLH+05]. Therefore, only inside the tight loops, there is reuse
and a gain in precision by persistence analysis for the code structures shown above.
As the cache is relatively large, even locked down to one way, these small loops

101

10 Practical Evaluation

and the functions called inside will be persistent for both persistence analyses
in most cases. The imprecision of the simple conflict counting variant does only
show up in some benchmarks like 5554_avionics3 and 5554_avionics8. There a
gain of 1-2% in precision can be observed for the age-tracking conflict counting
persistence analysis. In average, the age-tracking conflict counting persistence analysis
combined with the prediction graph base path analysis allow a precision gain of
7% over the original ILP method for the chosen benchmarks.

The MPC755 benchmarks have similar characteristics. As a cache miss is more
expensive for this hardware architecture, as main memory is quiet slow, the im-
provements by the persistence analysis are higher, thought. And as we have
here benchmarks available which are much larger than the instruction cache
(755_avionics11 - 744_avionics20) the imprecision of the simple conflict counting
analysis can be shown better. For the large benchmarks, the more complex per-
sistence analysis in in average 4% more precise than the simple conflict counting.
Overall, the precision gain by prediction graph bases analysis combined with
persistence analysis is in average 16% for all MPC755 benchmarks.

For these complex architectures the resulting ILP of the prediction graph based
path analysis is harder to solve, and the analysis runtime increases in some cases
up to a factor of 7 for large avionics tasks on the MPC5554. For the more complex
MPC755 the differences in analysis runtime vary between no difference and a
factor of 6.

10.9 Summary

In this chapter we presented the integration of the novel persistence analyses com-
bined with a novel prediction graph based path analysis in the WCET analyzer aiT.
This integration was used to evaluate the novel persistence analyses on several
different benchmarks for hardware architectures falling into the three different
classification of architectures by Wilhelm et al. [WGR+09]. The evaluation shows,
that the persistence analyses allow for more precise WCET estimation both for syn-
thetic and real-world derived applications. The results obtained by the synthetic
benchmarking framework are confirmed.

102

10.9 Summary

S1: ILP Based S1: ILP Based

WCET Time WCET Time

ifelse 140625 0:01 adpcm 27767709 0:01

ifelse_u 27468 0:01 bsort100 11102831 0:01

switch 257102 0:01 bs 5417 0:01

switch_u 176203 0:01 crc 1448259 0:01

prefix 350832 0:01 expint 812057 0:01

prefix_u 28633 0:01 fir 144132 0:01

lcdnum 5898 0:01

matmult 4143296 0:01

ndes 1337681 0:08

ns 189640 0:01

qsort-exam 178369 0:01

Table 10.1: WCET in cycles and analysis runtime in minutes for the ARM7 with
setting S1. The left column contains our synthetic examples, the right
column the tests from the WCET benchmarks suite.

103

10 Practical Evaluation

S2: Conflicts S3: Conflicts & Aging

WCET Time Impr. (S1) WCET Time Impr. (S1)

ifelse 11459 0:01 91.9% 11459 0:01 91.9%

ifelse_u 11459 0:01 58.3% 11459 0:01 58.3%

switch 47395 0:01 81.6% 47395 0:01 81.6%

switch_u 47395 0:03 73.1% 47237 0:03 73.2%

prefix 173413 0:01 50.6% 141028 0:01 59.8%

prefix_u 28633 0:01 0.0% 12504 0:01 56.3%

adpcm 19278648 0:03 30.6% 19270647 0:03 30.6%

bsort100 7406369 0:02 33.3% 7406369 0:02 33.3%

bs 5029 0:01 7.2% 5029 0:01 7.2%

crc 1178511 0:01 18.6% 1168083 0:01 19.3%

expint 443630 0:01 45.4% 443630 0:01 45.4%

fir 105651 0:01 26.7% 105651 0:01 26.7%

lcdnum 5263 0:01 10.8% 4755 0:01 19.4%

matmult 3945557 0:01 4.8% 3945557 0:01 4.8%

ndes 1171045 0:09 12.5% 1161520 0:09 13.2%

ns 163689 0:01 13.7% 163689 0:01 13.7%

qsort-exam 144918 0:01 18.8% 143394 0:01 19.6%

Table 10.2: WCET in cycles and analysis runtime in minutes for the ARM7 with
setting S3 and the set-wise or age-tracking conflict counting persistence
analysis.

104

10.9 Summary

WCET
25% 50% 75% 100%

S1: ILP Based, Reference = 100%

S3: Conflict Counting Persistence

S3: Conflict Counting & Aging Persistence

ifelse

ifelse_u

switch

switch_u

prefix

prefix_u

adpcm

bsort100

bs

crc

expint

fir

lcdnum

matmult

ndes

ns

qsort-exam

Figure 10.3: Comparison of WCET estimates for different ARM7 tests and analysis
settings, S1 is the reference with 100%.

105

10 Practical Evaluation

S1: ILP Based S2: Prediction Graph

WCET Time WCET Time Impr. (S1)

5554_avionics1 239898 0:40 231598 3:20 3.46%

5554_avionics2 235171 0:47 226943 3:16 3.50%

5554_avionics3 761312 4:52 737843 8:39 3.08%

5554_avionics4 430123 2:17 414856 6:06 3.55%

5554_avionics5 238661 1:09 230578 3:54 3.39%

5554_avionics6 179727 0:37 172999 3:06 3.74%

5554_avionics7 257479 1:07 249293 3:34 3.18%

5554_avionics8 688575 4:46 667620 8:05 3.04%

5554_avionics9 170545 0:36 164916 0:41 3.30%

5554_avionics10 163180 0:33 157236 0:37 3.64%

5554_avionics11 186955 0:40 181093 0:46 3.14%

5554_avionics12 224494 0:41 217553 0:47 3.09%

5554_avionics13 95882 0:32 92732 0:35 3.29%

5554_avionics14 147674 0:35 142844 0:39 3.27%

5554_avionics15 260862 0:48 257545 0:51 1.27%

5554_avionics16 101756 0:27 99765 0:29 1.96%

Table 10.3: WCET in cycles and analysis runtime in minutes for the MPC5554
with settings S1 and S2.

106

10.9 Summary

S2: Conflicts S3: Conflicts & Aging

WCET Time Impr. (S1) WCET Time Impr. (S1)

5554_avionics1 218595 2:45 8.88% 218595 2:46 8.88%

5554_avionics2 217206 3:02 7.64% 217206 3:02 7.64%

5554_avionics3 684059 15:09 10.15% 670031 28:07 11.99%

5554_avionics4 387235 6:05 9.97% 387235 6:06 9.97%

5554_avionics5 221441 3:03 7.22% 221441 3:03 7.22%

5554_avionics6 164873 2:29 8.26% 164873 2:29 8.26%

5554_avionics7 234884 3:06 8.78% 234884 3:06 8.78%

5554_avionics8 617706 14:59 10.29% 603678 25:40 12.33%

5554_avionics9 158301 1:10 7.18% 158301 1:11 7.18%

5554_avionics10 152592 0:49 6.49% 152592 0:50 6.49%

5554_avionics11 169642 1:16 9.26% 169642 1:20 9.26%

5554_avionics12 212629 1:01 5.29% 212629 1:01 5.29%

5554_avionics13 91619 0:41 4.45% 91619 0:41 4.45%

5554_avionics14 138659 0:52 6.10% 138659 0:52 6.10%

5554_avionics15 247326 0:59 5.19% 247326 1:02 5.19%

5554_avionics16 99000 0:32 2.71% 98973 0:33 2.73%

Table 10.4: WCET in cycles and analysis runtime in minutes for the MPC5554
with setting S3 and the set-wise or age-tracking conflict counting
persistence analysis.

107

10 Practical Evaluation

WCET
70% 80% 90% 100%

S1: ILP Based, Reference = 100%

S2: Prediction Graph

S3: Conflict Counting Persistence

S3: Conflict Counting & Aging Persistence

5554_avionics1

5554_avionics2

5554_avionics3

5554_avionics4

5554_avionics5

5554_avionics6

5554_avionics7

5554_avionics8

5554_avionics9

5554_avionics10

5554_avionics11

5554_avionics12

5554_avionics13

5554_avionics14

5554_avionics15

5554_avionics16

Figure 10.4: Comparison of WCET estimates for different MPC5554 tests and
analysis settings, S1 is the reference with 100%.

108

10.9 Summary

S1: ILP Based S2: Prediction Graph

WCET Time WCET Time Impr. (S1)

755_avionics1 30184 0:21 28212 0:25 6.53%

755_avionics2 82139 0:29 78754 0:36 4.12%

755_avionics3 74724 0:31 72202 0:35 3.38%

755_avionics4 69129 0:24 66788 0:27 3.39%

755_avionics5 80940 0:26 77784 0:31 3.90%

755_avionics6 103588 0:22 100604 0:24 2.88%

755_avionics7 30386 0:21 28346 0:25 6.71%

755_avionics8 31117 0:23 29006 0:27 6.78%

755_avionics9 69078 0:25 66651 0:27 3.51%

755_avionics10 84967 0:31 81894 0:36 3.62%

755_avionics11 895184 1:21 808165 1:32 9.72%

755_avionics12 1042489 1:30 946987 1:50 9.16%

755_avionics13 1188760 1:45 1079622 2:02 9.18%

755_avionics14 595568 1:03 538369 1:05 9.60%

755_avionics15 1074711 1:25 954226 1:34 11.21%

755_avionics16 923855 1:46 830002 1:55 10.16%

755_avionics17 842246 1:46 751052 1:52 10.83%

755_avionics18 991719 1:57 893113 2:01 9.94%

755_avionics19 1093188 1:26 979889 1:41 10.36%

755_avionics20 1108734 1:27 994473 1:42 10.31%

Table 10.5: WCET in cycles and analysis runtime in minutes for the MPC755 with
settings S1 and S2.

109

10 Practical Evaluation

S2: Conflicts S3: Conflicts & Aging

WCET Time Impr. (S1) WCET Time Impr. (S1)

755_avionics1 26216 0:28 13.15% 26216 0:26 13.15%

755_avionics2 74758 0:37 8.99% 74758 0:37 8.99%

755_avionics3 70206 0:37 6.05% 70206 0:37 6.05%

755_avionics4 64792 0:29 6.27% 64792 0:29 6.27%

755_avionics5 73788 0:40 8.84% 73788 0:40 8.84%

755_avionics6 98608 0:26 4.81% 98608 0:26 4.81%

755_avionics7 26350 0:28 13.28% 26350 0:26 13.28%

755_avionics8 27010 0:29 13.20% 27010 0:29 13.20%

755_avionics9 64655 0:29 6.40% 64655 0:28 6.40%

755_avionics10 79898 0:36 5.97% 79898 0:37 5.97%

755_avionics11 716200 2:30 19.99% 690200 3:41 22.90%

755_avionics12 845059 3:01 18.94% 803926 5:00 22.88%

755_avionics13 976392 3:42 17.86% 931647 6:21 21.63%

755_avionics14 456859 1:48 23.29% 443370 2:37 25.56%

755_avionics15 855662 3:30 20.38% 771011 7:00 28.26%

755_avionics16 725449 3:13 21.48% 692313 5:52 25.06%

755_avionics17 636029 3:13 24.48% 608555 4:37 27.75%

755_avionics18 778054 3:47 21.54% 724181 4:54 26.98%

755_avionics19 940102 3:40 14.00% 874127 7:45 20.04%

755_avionics20 954686 3:26 13.89% 887758 7:53 19.93%

Table 10.6: WCET in cycles and analysis runtime in minutes for the MPC755 with
setting S3 and the set-wise or age-tracking conflict counting persistence
analysis.

110

10.9 Summary

WCET
70% 80% 90% 100%

S1: ILP Based, Reference = 100%

S2: Prediction Graph

S3: Conflict Counting Persistence

S3: Conflict Counting & Aging Persistence

755_avionics1

755_avionics2

755_avionics3

755_avionics4

755_avionics5

755_avionics6

755_avionics7

755_avionics8

755_avionics9

755_avionics10

755_avionics11

755_avionics12

755_avionics13

755_avionics14

755_avionics15

755_avionics16

755_avionics17

755_avionics18

755_avionics19

755_avionics20

Figure 10.5: Comparison of WCET estimates for different MPC755 tests and anal-
ysis settings, S1 is the reference with 100%.

111

CHAPTER11
Related Work

There exist two areas of related work:

• the research on different persistence analysis techniques

• the application of existing persistence analyses to different problems and
improvements to their precision

In this chapter, we will show, how these relate to the analyses proposed in this
thesis. First, we will take a look at other existing persistence analyses, then we
will cover the different improvements and applications of them.

11.1 Other Cache Persistence Analyses

There exist two major other different persistence analyses, beside the one by
Ferdinand (see Chapter 5) and the ones proposed in this thesis: first-miss analysis
by Mueller and a novel persistence analysis by Huynh et al.. In addition, Kartik
Nagar proposes a similar may-based cache persistence analysis as introduced in
[Cul11].

11.1.1 First-Miss Analysis by Mueller

Frank Mueller introduced his first-miss analysis in [MWH94] and applied it to
direct-mapped instruction caches in [HAM+99]. Later this approach was extended
to handle set-associative instruction caches with LRU replacement strategy in
[Mue00]. The method is not based on abstract interpretation but integrated into
a proprietary static cache simulation framework [Mue95]. Unlike the analyses
introduced in this thesis, it was never applied to complex architectures featuring

113

11 Related Work

timing anomalies. In principle, it is the same technique as the conflict counting
persistence per set analysis as described in Chapter 6. Given our benchmarking
results, this technique has the least precision compared to our other analyses.

11.1.2 Persistence Analysis by Huynh et al.

Huynh et al. present in [HJR11] a similar counter example for the persistence of
Ferdinand as shown in Section 5.3. They introduce a novel persistence analysis
that solves this issue. Their analysis keeps for any accessed element inside the
persistence scope track of which other elements might be accessed before the
next use of this element. This approach is equivalent to the element-wise conflict
counting persistence analysis introduced in Chapter 7 which keeps track of possi-
ble conflicting elements for each element. They perform their evaluation within
an analysis framework incompatible to the one chosen by us and for a different
hardware architecture (an in-order simulated processor) the direct evaluation
results of their paper are not comparable to the results in this thesis. Still, as the
conflict counting per set analysis is equivalent, our benchmarking results will
hold for this analysis, too. It is more precise than the analysis by Mueller, still
our age-tracking conflict counting analysis from Chapter 9 allows more precise
results.

11.1.3 Persistence Analysis by Kartik Nagar

Inspired by Huynh et al. in [HJR11] and our publications in [Cul11] Kartik Nagar
designed a persistence analysis based on may cache analysis, too. The analysis as
introduced in [Nag12] is equivalent to the may-based cache persistence analysis
as described in Chapter 8 but gains more precision on corner cases by using
must cache analysis information in addition. In Section 12.1 we will show how
this analysis cooperation can be done and which precision gains can be achieved
for analyses that keep track of the ages of cache entries, like the may-based or
age-tracking conflict counting persistence analysis.

11.2 Application of Cache Persistence Analyses

Besides research on the actual design of persistence analyses, there are other
groups working on different application fields for existing persistence analyses

114

11.2 Application of Cache Persistence Analyses

and how to optimize the analysis results by improving the scope computation,
etc..

11.2.1 Persistence Scope Optimizations

Ballabriga and Cassé [BC08] propose the use of nested persistence scopes to
improve the analysis precision. Whereas they base their work on the buggy persis-
tence analysis by Ferdinand, their scope computation and usage is independent of
the concrete analysis. Therefore it will be applicable to the analyses proposed in
this thesis.

Huynh et al. present in [HJR11] in addition to their novel persistence analysis an
intelligent selection of data cache persistence scopes, e.g., to differentiate multiple
scopes per loop. This technique can be used for our analyses, too, as it doesn’t
depend on the actual analysis design, as long as it is an abstract interpretation
based one.

11.2.2 Application to Muli-Level Caches

In [LHP09] Lesage et al. show how to apply the persistence analysis to architec-
tures with multi-level caches. They reuse an existing analysis for their study, likely
based on Ferdinand’s abstract interpretation, as it fits their analysis framework.

11.2.3 Application to Multi-Core Architectures

Mingsong Lv et al. used in [LYGY10] a preliminary version of our may-based
analysis as introduced in Chapter 8 for their research on timing analysis for
multi-core architectures.

115

CHAPTER12
Extensions & Future Work

We introduced in this thesis several novel cache persistence analyses and eval-
uated them on synthetic benchmarks and real-world applications. Whereas the
proposed analyses perform well on both, there is still room for extensions of the
analyses. Additionally there are similar problem areas where adapted variants
of the persistence analysis might be applicable. We will now show such possible
extensions and future research areas.

12.1 Using Must & May Analyses Information

In this thesis we concentrated on the design of cache persistence analyses and
their precision. Still, during normal timing analysis runs, global must and may
cache analysis information is often available. This global knowledge can be used
to enhance the analysis results of the persistence analyses inside their scopes.

12.1.1 Useful Must Cache Analysis Information

The may-based and age-tracking conflict counting persistence analyses keep track
of upper age bounds of possible cache set entries. Given the example from
Figure 12.1, let us assume that the referenced memory blocks a, b and c map to
the same 2-way associative cache set with LRU replacement.

As the number of accessed memory blocks in the loop is larger than the associa-
tivity, evictions for some blocks will occur during the loop execution. Still the
memory block a won’t be evicted after the initial loading as only one other block
will be accessed until the next access to a happens.

117

12 Extensions & Future Work

void reusedMemoryBlocks () {
for (int i = 0 ; i < NUMBER_OF_EVENTS; ++ i) {

accessA () ;
i f (somethingUnknownForEachCall ()) {

accessB () ;
accessB () ;

} else {
accessC () ;
accessC () ;

}
}

}

Figure 12.1: Loop which accesses three memory blocks a, b and c mapping to
the same cache set. b and c are always accessed twice inside their
if-then-else branch.

This won’t be detected by the may-based or age-tracking persistence analysis,
though, as these analyses don’t know that the second access to b or c in the
individual if-then-else branch won’t age any element that is older than one.

Such information is not computed by these analyses, as they only keep track of
upper ages of memory blocks possibly in the cache, but they have no information
if a block is definitively in the cache.

This knowledge is available in the global must cache analysis. The must cache
analysis will compute that the second memory reference to b and c in the if-then-
else branch will be a sure-hit and that b and c will have age one.

By using this information, the persistence analyses can avoid to age memory blocks
that are older than b or c for the respective second reference and will be able to
classify the memory reference to a as persistent for all loop iterations.

Similar examples for the precision gain through this analysis cooperation are given
by Kartik Nagar in [Nag12].

118

12.2 Better Handling of Replacement Policies

12.1.2 Useful May Cache Analysis Information

If we analyze caches with write-through policy, only write accesses that hit the
cache will trigger a cache update on the real hardware. If we use the persistence
analyses as introduced in this thesis, on a write access, always both possibilities
must be handled to be sound:

access hits the cache persistence analysis update for the memory reference
must be done

access misses the cache no persistence analysis update is allowed

Afterwards the results of both possibilities must be joined.

Let us look at the example from Figure 12.2 and assume a direct mapped cache
with write-through policy.

void writeToCache () {
for (int i = 0 ; i < NUMBER_OF_EVENTS; ++ i) {

i f (somethingUnknownForEachCall ())
accessA () ;

writeOnlyB () ;
}

}

Figure 12.2: Loop which accesses two memory blocks a and b mapping to the same
cache set. b is only written, never read.

Inside the loop only the memory block a is possibly loaded, b is only written.
Without any additional information, the persistence analyses will need to handle
the references to b. This will lead to false possible evictions of a.

If global may analysis information is available and the reference to b can be
classified as a sure-miss, the persistence analysis can ignore the reference to b
completely and the memory reference to a will be classified as persistent.

12.2 Better Handling of Replacement Policies

The cache persistence analyses introduced in this thesis and the ones by Mueller,
Huynh or Nagar all assume either the LRU replacement policy or a direct mapped

119

12 Extensions & Future Work

cache. We will introduce two methods to cope with other replacement policies:
handle them like smaller LRU caches if possible or argue about cumulative limits
for misses.

12.2.1 Exploiting Relations between Non-LRU and LRU Policies

Using the concept of relative miss-competitiveness as introduced by Jan Reineke
in [Rei08, RG08], we can apply the conflict counting analyses to the PLRU re-
placement policy. But as a k-way associative PLRU cache is (1, 0)-miss-competitive
relative to a (1 + log2(k))-way LRU cache, the persistence analysis must assume a
cache associativity of only (1 + log2(k)). This allows only a part of the cache sizes
occurring in real systems to be exploited by the analyses.

For other replacement policies like FIFO [GR10a, GR10b], MRU [GLYY12] or
Pseudo-RoundRobin the situation is even worse. The persistence analysis must
assume that only one way of the cache is used if we want to handle them with the
LRU semantics based analyses.

12.2.2 Cumulative Arguments for Non-LRU Policies

For policies for which no good relations to LRU exist, like FIFO or MRU, the
reduction to smaller direct mapped caches enables the use of the LRU based
analyses, yet it leads to a large loss in precision as only one way is considered.

For these policies it makes sense to argue not about the persistence classification
of individual memory references but compute cumulative bounds for possible
misses over the whole persistence scope. For most of these policies this is possible if
only a limited set of different memory blocks is referenced that is at most as large
as the associativity. The set-wise conflict counting persistence analysis introduced
in Chapter 6 can be used to compute for which references inside a scope this
constraint is met.

These cumulative limits can be used in the ILP to limit the number of misses for
the individual memory blocks potentially accessed in the scope.

120

12.3 Enhanced Persistence Scope Selection

FIFO Replacement

For a k-way cache with FIFO replacement it holds, that if inside a scope the pro-
gram accesses at most k different memory blocks mapping to the same set, at most
one miss can happen per memory block [Gru12]. Unlike the first-miss characteris-
tic of the persistence as introduced in Chapter 4 this cumulative argument doesn’t
require the first access to be the possible miss. Instead, it is possible that the first
access might be a hit and a later access the single possible miss.

MRU Replacement

For a k-way cache with MRU replacement it holds, that if inside a scope the
program accesses at most k different memory blocks mapping to the same set, at
most k misses can happen per block [GLYY12]. Like for the FIFO replacement no
guarantees can be made, that the first accesses must be the misses.

12.3 Enhanced Persistence Scope Selection

We used for our evaluation in Chapter 10 an automatic persistence scope selection
that is implemented as a separate analysis and is performed before the cache and
pipeline analysis.

This scope selection may be guided by the user who can specify interesting routines
in the control-flow graph. Independent of this, the scope selection analysis will
try to detect which loops might benefit from persistence analysis because they e.g.,
contain conditional control-flow.

As modern processor architectures employ techniques like prefetching, branch-
prediction or speculative execution, actually only the pipeline analysis knows,
which memory blocks might be really accessed. For example an if-then-else
construct might look interesting for the persistence analysis in the scope heuristics
as the condition is unknown, but the pipeline might prefetch both paths anyway.

Therefore one might enhance the persistence scope selection by first running
a cache and pipeline analysis without persistence analysis to compute which
memory addresses are really accessed. This information can then be used to
compute more precise cache persistence scopes that can be used in a second cache
and pipeline analysis run.

121

12 Extensions & Future Work

12.4 Write-Back Cache Analysis

The analysis of caches that employ the write-back strategy instead of write-through
is still an open issue. There exists no precise analysis to compute if a load into the
cache will cause an eviction and write-back of a dirty cache line.

The conservative assumption that any load of a new cache line into the cache might
cause such a write-back activity doesn’t allow for precise WCET estimates.

The cache persistence analysis can help to improve the precision by proving the
absence of evictions for elements in the cache inside the persistence scope.

Besides, the may-based persistence as introduced in Chapter 8 uses a modified
may cache analysis to track the maximal ages of all possible cache entries. This
information might be reused to find the earliest point in time at which an element
can be evicted. Combined with the traditional may cache analysis, that detects the
latest point in time a element can leave the cache, one might be able to compute
tight time windows for possible evictions of individual dirty cache lines.

122

CHAPTER13
Conclusion

Information on the persistence of memory blocks in cache memories can consid-
erably help to more precisely bound the worst-case execution times of real-time
tasks.

Over the last years the topic of cache persistence analysis has received considerable
attention in academia.

Unlike other approaches we did not only focus on the construction of more (or
less) precise persistence analyses. We also provided a concise formalization of
cache persistence enabling better problem understanding and concise correctness
proofs.

This thesis compares the two existing state-of-the-art analyses and two completely
novel analyses using a framework of synthetic benchmarking. Our novel age-
tracking conflict counting persistence analysis combines the ideas of all other analyses
and is the most precise.

In addition we showed a correctness issue with the original persistence analysis
by Ferdinand.

Beside our work, there are no results of practical evaluations of cache persis-
tence analyses on real architectures available, as for non-fully-timing-compositional
processors persistence information cannot be used as easily as the results of the
classical must or may cache analysis. The cache hits and misses have to be taken
into account precisely.

We have integrated all four persistence analyses into the industrial-strength WCET
analyzer aiT based on a refined path analysis on so-called prediction graphs. The
analyses were evaluated on well known WCET benchmarks and real programs
of the avionics domain. The evaluation showed considerable precision improve-
ments of the computed WCET varying between 7% on average for the moderately

123

13 Conclusion

complex MPC5554 architecture, and 16% for the quite complex MPC755 architec-
ture.

124

APPENDIXA
Source Code

In this chapter we provide source code snippets as used for the analyses imple-
mentations and evaluations. All shown sources are C++ and compilable with a
normal compiler like the GNU G++ compiler.

A.1 Synthetic Benchmarking

/ * *
* s tandard i n c l u d e s + data s t r u c t u r e s
* /

include <cstdio >
include <c s t d l i b >
include <map>
include <set >
include <vector >

/ * *
* d e t e r m i n i s t i c random g e n e r a t o r
* h t t p : / / en . w i k i p e d i a . org / wik i / X o r s h i f t
* /

s t a t i c unsigned int x ;
s t a t i c unsigned int y ;
s t a t i c unsigned int z ;
s t a t i c unsigned int w;

void initRandomSeed ()
{

x = 123456789;
y = 362436069;
z = 521288629;
w = 88675123;

}

unsigned int randomNumber ()
{

unsigned int t = x ^ (x << 1 1) ;
x = y ; y = z ; z = w;
return w = w ^ (w >> 19) ^ (t ^ (t >> 8)) ;

}

/ * *
* Address == unsigned i n t e g e r s f o r us
* we use p l a c e h o l d e r s f o r t h e d i f f e r e n t b l o c k s , e . g . 0 , 1 , 2 , . . .
* /

typedef unsigned int Address ;

/ * *
* P e r s i s t e n c e A n a l y s i s Set , Gener i c Implemeta t ion => does nothing , no a c c e s s p e r s i s t e n t
* /

c l a s s P e r s i s t e n c e S e t {

125

A Source Code

public :
/ * *
* Cons t ruc t new empty p e r s i s t e n c e s e t
* /

P e r s i s t e n c e S e t ()
{
}

/ * *
* D e s t r u c t i t
* /

v i r t u a l ~P e r s i s t e n c e S e t ()
{
}

/ * *
* Crea t e a new empty s e t f o r g iven a s s o c i a t i v i t y
* /

v i r t u a l P e r s i s t e n c e S e t * c r e a t e (unsigned int a s s o c i a t i v i t y) const = 0 ;

/ * *
* Clone a s e t , needed f o r implementa t ion
* /

v i r t u a l P e r s i s t e n c e S e t * clone () const = 0 ;

/ * *
* update f u n c t i o n , update t h e s e t f o r g iven a c c e s s , non− d e s t r u c t i v e
* /

v i r t u a l P e r s i s t e n c e S e t *update (Address memoryBlock) const = 0 ;

/ * *
* j o i n f u n c t i o n , j o i n t h i s s e t with an o t h e r s e t , non− d e s t r u c t i v e
* /

v i r t u a l P e r s i s t e n c e S e t * j o i n (const P e r s i s t e n c e S e t * s e t) const = 0 ;

/ * *
* compare f u n c t i o n , needed f o r f i x e d p o i n t i t e r a t i o n
* /

v i r t u a l bool operator== (const P e r s i s t e n c e S e t &s e t) const = 0 ;

/ * *
* c l a s s i f i c a t i o n o f a a c c e s s : i s t h e a c c e s s p e r s i s t e n t ?
* /

v i r t u a l bool i s P e r s i s t e n t (Address memoryBlock) const = 0 ;

/ * *
* p r i n t f u n c t i o n
* /

v i r t u a l void pr int () const = 0 ;
} ;

/ * *
* P e r s i s t e n c e A n a l y s i s Set , C o n f l i c t Counting Per Se t
* /

c l a s s P e r s i s t e n c e S e t C o n f l i c t S e t : public P e r s i s t e n c e S e t {
public :

/ * *
* Cons t ruc t new empty p e r s i s t e n c e s e t
* /

P e r s i s t e n c e S e t C o n f l i c t S e t (unsigned int a s s o c i a t i v i t y = 0)
: m _ a s s o c i a t i v i t y (a s s o c i a t i v i t y)
, m_isOverFull (f a l s e)

{
}

/ * *
* D e s t r u c t i t
* /

v i r t u a l ~ P e r s i s t e n c e S e t C o n f l i c t S e t ()
{
}

/ * *
* Crea t e a new empty s e t f o r g iven a s s o c i a t i v i t y
* /

v i r t u a l P e r s i s t e n c e S e t * c r e a t e (unsigned int a s s o c i a t i v i t y) const
{

return new P e r s i s t e n c e S e t C o n f l i c t S e t (a s s o c i a t i v i t y) ;
}

/ * *

126

A.1 Synthetic Benchmarking

* Clone a s e t , needed f o r implementa t ion
* /

v i r t u a l P e r s i s t e n c e S e t * clone () const
{

/ * *
* c r e a t e e x a c t copy
* /

P e r s i s t e n c e S e t C o n f l i c t S e t *newSet = new P e r s i s t e n c e S e t C o n f l i c t S e t () ;
*newSet = * t h i s ;
return newSet ;

}

/ * *
* update f u n c t i o n , update t h e s e t f o r g iven a c c e s s , non− d e s t r u c t i v e
* /

v i r t u a l P e r s i s t e n c e S e t *update (Address memoryBlock) const
{

/ * *
* i n s e r t e l ement i n t o c o n f l i c t s s e t
* /

P e r s i s t e n c e S e t C o n f l i c t S e t *newSet = s t a t i c _ c a s t <P e r s i s t e n c e S e t C o n f l i c t S e t *> (clone ()) ;
newSet−>m_conf l ic t s . i n s e r t (memoryBlock) ;

i f (m_isOverFull | | newSet−>m_conf l ic t s . s i z e () > m _ a s s o c i a t i v i t y) {
newSet−>m_isOverFull = true ;
newSet−>m_conf l ic t s . c l e a r () ;

}

return newSet ;
}

/ * *
* j o i n f u n c t i o n , j o i n t h i s s e t with an o t h e r s e t , non− d e s t r u c t i v e
* /

v i r t u a l P e r s i s t e n c e S e t * j o i n (const P e r s i s t e n c e S e t * s e t) const
{

/ * *
* union o f e l e m e n t s in c o n f l i c t s s e t s
* /

P e r s i s t e n c e S e t C o n f l i c t S e t *newSet = s t a t i c _ c a s t <P e r s i s t e n c e S e t C o n f l i c t S e t *> (clone ()) ;
const P e r s i s t e n c e S e t C o n f l i c t S e t * _ s e t = s t a t i c _ c a s t <const P e r s i s t e n c e S e t C o n f l i c t S e t *>(s e t) ;
for (s td : : set <Address > : : c o n s t _ i t e r a t o r i t = _set −>m_conf l ic t s . begin () ;

i t != _set −>m_conf l ic t s . end () ; ++ i t)
newSet−>m_conf l ic t s . i n s e r t (* i t) ;

i f (m_isOverFull | | _set −>m_isOverFull | | newSet−>m_conf l ic t s . s i z e () > m _ a s s o c i a t i v i t y) {
newSet−>m_isOverFull = true ;
newSet−>m_conf l ic t s . c l e a r () ;

}

return newSet ;
}

/ * *
* compare f u n c t i o n , needed f o r f i x e d p o i n t i t e r a t i o n
* /

v i r t u a l bool operator== (const P e r s i s t e n c e S e t &s e t) const
{

return m_isOverFull == s t a t i c _ c a s t <const P e r s i s t e n c e S e t C o n f l i c t S e t *>(& s e t)−>m_isOverFull
&& m_conf l ic t s == s t a t i c _ c a s t <const P e r s i s t e n c e S e t C o n f l i c t S e t *>(& s e t)−> m_conf l ic t s ;

}

/ * *
* c l a s s i f i c a t i o n o f a a c c e s s : i s t h e a c c e s s p e r s i s t e n t ?
* /

v i r t u a l bool i s P e r s i s t e n t (Address memoryBlock) const
{

return ! m_isOverFull && (m_conf l ic t s . s i z e () <= m _ a s s o c i a t i v i t y) ;
}

/ * *
* p r i n t f u n c t i o n
* /

v i r t u a l void pr int () const
{

i f (m_isOverFull) {
p r i n t f (" { TOP } ") ;
return ;

}

p r i n t f (" { ") ;

127

A Source Code

for (s td : : set <Address > : : c o n s t _ i t e r a t o r i t = m_conf l ic t s . begin () ; i t != m_conf l ic t s . end () ; ++ i t)
p r i n t f (" %u" , * i t) ;

p r i n t f (" } \ n") ;
}

p r i v a t e :
/ * *
* cache a s s o c i a t i v i t y
* /

unsigned int m _ a s s o c i a t i v i t y ;

/ * *
* o p t m i z a t i o n : f u l l ?
* /

bool m_isOverFull ;

/ * *
* data s t r u c t u r e : s e t o f c o n f l i c t s
* /

std : : set <Address> m_conf l ic t s ;
} ;

/ * *
* P e r s i s t e n c e A n a l y s i s Set , C o n f l i c t Counting Per Element
* /

c l a s s Pers i s tenceSe tConf l i c tE lement : public P e r s i s t e n c e S e t {
public :

/ * *
* Cons t ruc t new empty p e r s i s t e n c e s e t
* /

Pers i s tenceSe tConf l i c tE lement (unsigned int a s s o c i a t i v i t y = 0)
: m _ a s s o c i a t i v i t y (a s s o c i a t i v i t y)

{
}

/ * *
* D e s t r u c t i t
* /

v i r t u a l ~Pers i s t enceSe tConf l i c tE lement ()
{
}

/ * *
* Crea t e a new empty s e t f o r g iven a s s o c i a t i v i t y
* /

v i r t u a l P e r s i s t e n c e S e t * c r e a t e (unsigned int a s s o c i a t i v i t y) const
{

return new Pers i s tenceSe tConf l i c tE lement (a s s o c i a t i v i t y) ;
}

/ * *
* Clone a s e t , needed f o r implementa t ion
* /

v i r t u a l P e r s i s t e n c e S e t * clone () const
{

/ * *
* c r e a t e e x a c t copy
* /

Pers i s tenceSe tConf l i c tE lement *newSet = new Pers i s tenceSe tConf l i c tE lement () ;
*newSet = * t h i s ;
return newSet ;

}

/ * *
* update f u n c t i o n , update t h e s e t f o r g iven a c c e s s , non− d e s t r u c t i v e
* /

v i r t u a l P e r s i s t e n c e S e t *update (Address memoryBlock) const
{

/ * *
* i n s e r t e l ement i n t o c o n f l i c t s s e t
* /

Pers i s tenceSe tConf l i c tE lement *newSet = s t a t i c _ c a s t <Pers i s t enceSe tConf l i c tE lement *> (clone ()) ;
for (s td : : map<Address , P e r s i s t e n c e S e t C o n f l i c t S e t > : : i t e r a t o r i t = newSet−>m_conf l ic t s . begin () ;

i t != newSet−>m_conf l ic t s . end () ; ++ i t) {
/ * *
* update a l l s e t s not f o r t h i s e l ement
* /

i f (i t −> f i r s t != memoryBlock) {
P e r s i s t e n c e S e t C o n f l i c t S e t * newConfl ictSet

= s t a t i c _ c a s t <P e r s i s t e n c e S e t C o n f l i c t S e t *>(i t −>second . update (memoryBlock)) ;
i t −>second = * newConfl ictSet ;

128

A.1 Synthetic Benchmarking

d e l e t e newConfl ictSet ;
}

}

/ * *
* i n i t s e t with only t h i s e l ement f o r t h i s e l ement
* /

P e r s i s t e n c e S e t C o n f l i c t S e t newConf (m _ a s s o c i a t i v i t y) ;
P e r s i s t e n c e S e t C o n f l i c t S e t * filledNewConf

= s t a t i c _ c a s t <P e r s i s t e n c e S e t C o n f l i c t S e t *>(newConf . update (memoryBlock)) ;
newSet−>m_conf l ic t s . e rase (memoryBlock) ;
newSet−>m_conf l ic t s . i n s e r t (std : : make_pair (memoryBlock , * filledNewConf)) ;
d e l e t e filledNewConf ;

/ * *
* be done , r e t u r n new s e t
* /

return newSet ;
}

/ * *
* j o i n f u n c t i o n , j o i n t h i s s e t with an o t h e r s e t , non− d e s t r u c t i v e
* /

v i r t u a l P e r s i s t e n c e S e t * j o i n (const P e r s i s t e n c e S e t * s e t) const
{

/ * *
* union o f e l e m e n t s in c o n f l i c t s s e t s
* /

Pers i s tenceSe tConf l i c tE lement *newSet = s t a t i c _ c a s t <Pers i s t enceSe tConf l i c tE lement *> (clone ()) ;
const Pers i s tenceSe tConf l i c tE lement * _ s e t = s t a t i c _ c a s t <const Pers i s tenceSe tConf l i c tE lement *>(s e t) ;
for (s td : : map<Address , P e r s i s t e n c e S e t C o n f l i c t S e t > : : c o n s t _ i t e r a t o r i t = _set −>m_conf l ic t s . begin () ;

i t != _set −>m_conf l ic t s . end () ; ++ i t) {
/ * *
* j o i n i n d i v i d u a l s e t s
* /

std : : map<Address , P e r s i s t e n c e S e t C o n f l i c t S e t > : : i t e r a t o r itNew
= newSet−>m_conf l ic t s . f ind (i t −> f i r s t) ;

i f (itNew == newSet−>m_conf l ic t s . end ())
newSet−>m_conf l ic t s . i n s e r t (std : : make_pair (i t −> f i r s t , i t −>second)) ;

else {
P e r s i s t e n c e S e t C o n f l i c t S e t * newConfl ictSet

= s t a t i c _ c a s t <P e r s i s t e n c e S e t C o n f l i c t S e t *>(itNew−>second . j o i n (& i t −>second)) ;
itNew−>second = * newConfl ictSet ;
d e l e t e newConfl ictSet ;

}
}
return newSet ;

}

/ * *
* compare f u n c t i o n , needed f o r f i x e d p o i n t i t e r a t i o n
* /

v i r t u a l bool operator== (const P e r s i s t e n c e S e t &s e t) const
{

return m_conf l ic t s == s t a t i c _ c a s t <const Pers i s tenceSe tConf l i c tE lement *>(& s e t)−> m_conf l ic t s ;
}

/ * *
* c l a s s i f i c a t i o n o f a a c c e s s : i s t h e a c c e s s p e r s i s t e n t ?
* /

v i r t u a l bool i s P e r s i s t e n t (Address memoryBlock) const
{

s td : : map<Address , P e r s i s t e n c e S e t C o n f l i c t S e t > : : c o n s t _ i t e r a t o r i t = m_conf l ic t s . f ind (memoryBlock) ;
i f (i t == m_conf l ic t s . end ())

return t rue ;
return i t −>second . i s P e r s i s t e n t (memoryBlock) ;

}

/ * *
* p r i n t f u n c t i o n
* /

v i r t u a l void pr int () const
{

for (s td : : map<Address , P e r s i s t e n c e S e t C o n f l i c t S e t > : : c o n s t _ i t e r a t o r i t = m_conf l ic t s . begin () ;
i t != m_conf l ic t s . end () ; ++ i t) {

p r i n t f ("%u => " , i t −> f i r s t) ;
i t −>second . pr int () ;

}
}

p r i v a t e :

129

A Source Code

/ * *
* cache a s s o c i a t i v i t y
* /

unsigned int m _ a s s o c i a t i v i t y ;

/ * *
* data s t r u c t u r e : s e t o f s e t s o f c o n f l i c t s
* /

std : : map<Address , P e r s i s t e n c e S e t C o n f l i c t S e t > m_conf l ic t s ;
} ;

/ * *
* P e r s i s t e n c e A n a l y s i s Set , May Based
* /

c l a s s PersistenceSetMayBased : public P e r s i s t e n c e S e t {
public :

/ * *
* Cons t ruc t new empty p e r s i s t e n c e s e t
* /

PersistenceSetMayBased (unsigned int a s s o c i a t i v i t y = 0)
: m _ a s s o c i a t i v i t y (a s s o c i a t i v i t y)

{
}

/ * *
* D e s t r u c t i t
* /

v i r t u a l ~PersistenceSetMayBased ()
{
}

/ * *
* Crea t e a new empty s e t f o r g iven a s s o c i a t i v i t y
* /

v i r t u a l P e r s i s t e n c e S e t * c r e a t e (unsigned int a s s o c i a t i v i t y) const
{

return new PersistenceSetMayBased (a s s o c i a t i v i t y) ;
}

/ * *
* Clone a s e t , needed f o r implementa t ion
* /

v i r t u a l P e r s i s t e n c e S e t * clone () const
{

/ * *
* c r e a t e e x a c t copy
* /

PersistenceSetMayBased *newSet = new PersistenceSetMayBased () ;
*newSet = * t h i s ;
return newSet ;

}

/ * *
* update f u n c t i o n , update t h e s e t f o r g iven a c c e s s , non− d e s t r u c t i v e
* /

v i r t u a l P e r s i s t e n c e S e t *update (Address memoryBlock) const
{

PersistenceSetMayBased *newSet = s t a t i c _ c a s t <PersistenceSetMayBased *> (clone ()) ;

/ * *
* f i r s t : c a l c u l a t e may e v i c t , r e g a r d t h e may s e t
* /

unsigned int otherElementsInCache = 0 ;
unsigned int ageOfMemoryBlock = m _ a s s o c i a t i v i t y ;
for (s td : : map<Address , unsigned int > : : c o n s t _ i t e r a t o r i t = m_maySet . begin () ;

i t != m_maySet . end () ; ++ i t) {
i f (i t −> f i r s t == memoryBlock)

ageOfMemoryBlock = i t −>second ;
else

++otherElementsInCache ;
}
bool mayEvict = (otherElementsInCache >= m _ a s s o c i a t i v i t y) ;

/ * *
* update may , age a l l e l ements , new e l ement in f i r s t age
* /

newSet−>m_maySet . c l e a r () ;
for (s td : : map<Address , unsigned int > : : c o n s t _ i t e r a t o r i t = m_maySet . begin () ;

i t != m_maySet . end () ; ++ i t) {
i f (i t −>second <= ageOfMemoryBlock) {

unsigned int age = i t −>second + 1 ;

130

A.1 Synthetic Benchmarking

i f (age < m _ a s s o c i a t i v i t y)
newSet−>m_maySet . i n s e r t (std : : make_pair (i t −> f i r s t , age)) ;

} else
newSet−>m_maySet . i n s e r t (std : : make_pair (i t −> f i r s t , i t −>second)) ;

}
newSet−>m_maySet [memoryBlock] = 0 ;

/ * *
* update may may , age a l l e l ements , i f e v i c t i o n s p o s s i b l e => age i n t o t h e bottom l i n e
* /

for (s td : : map<Address , unsigned int > : : i t e r a t o r i t = newSet−>m_mayMaxSet . begin () ;
i t != newSet−>m_mayMaxSet . end () ; ++ i t) {

i f (i t −>second == m _ a s s o c i a t i v i t y)
continue ;

i f ((i t −>second + 1) == m _ a s s o c i a t i v i t y) {
i f (mayEvict)

i t −>second = m _ a s s o c i a t i v i t y ;
} else

++(i t −>second) ;
}
newSet−>m_mayMaxSet [memoryBlock] = 0 ;

return newSet ;
}

/ * *
* j o i n f u n c t i o n , j o i n t h i s s e t with an o t h e r s e t , non− d e s t r u c t i v e
* /

v i r t u a l P e r s i s t e n c e S e t * j o i n (const P e r s i s t e n c e S e t * s e t) const
{

PersistenceSetMayBased *newSet = s t a t i c _ c a s t <PersistenceSetMayBased *> (clone ()) ;
const PersistenceSetMayBased * _ s e t = s t a t i c _ c a s t <const PersistenceSetMayBased *>(s e t) ;

/ * *
* may a n a l y s i s j o i n
* /

for (s td : : map<Address , unsigned int > : : c o n s t _ i t e r a t o r i t = _set −>m_maySet . begin () ;
i t != _set −>m_maySet . end () ; ++ i t) {

/ * *
* e l ement needs t o be i n s e r t e d or minimal age computed ?
* /

std : : map<Address , unsigned int > : : i t e r a t o r itNew = newSet−>m_maySet . f ind (i t −> f i r s t) ;
i f (itNew == newSet−>m_maySet . end ())

newSet−>m_maySet . i n s e r t (std : : make_pair (i t −> f i r s t , i t −>second)) ;
else {

i f (i t −>second < itNew−>second)
itNew−>second = i t −>second ;

}
}

/ * *
* may max a n a l y s i s j o i n
* /

for (s td : : map<Address , unsigned int > : : c o n s t _ i t e r a t o r i t = _set −>m_mayMaxSet . begin () ;
i t != _set −>m_mayMaxSet . end () ; ++ i t) {

/ * *
* e l ement needs t o be i n s e r t e d or minimal age computed ?
* /

std : : map<Address , unsigned int > : : i t e r a t o r itNew = newSet−>m_mayMaxSet . f ind (i t −> f i r s t) ;
i f (itNew == newSet−>m_mayMaxSet . end ())

newSet−>m_mayMaxSet . i n s e r t (std : : make_pair (i t −> f i r s t , i t −>second)) ;
else {

i f (i t −>second > itNew−>second)
itNew−>second = i t −>second ;

}
}

return newSet ;
}

/ * *
* compare f u n c t i o n , needed f o r f i x e d p o i n t i t e r a t i o n
* /

v i r t u a l bool operator== (const P e r s i s t e n c e S e t &s e t) const
{

return m_maySet == s t a t i c _ c a s t <const PersistenceSetMayBased *>(& s e t)−>m_maySet
&& m_mayMaxSet == s t a t i c _ c a s t <const PersistenceSetMayBased *>(& s e t)−>m_mayMaxSet ;

}

/ * *

131

A Source Code

* c l a s s i f i c a t i o n o f a a c c e s s : i s t h e a c c e s s p e r s i s t e n t ?
* /

v i r t u a l bool i s P e r s i s t e n t (Address memoryBlock) const
{

s td : : map<Address , unsigned int > : : c o n s t _ i t e r a t o r i t = m_mayMaxSet . f ind (memoryBlock) ;
i f (i t == m_mayMaxSet . end ())

return t rue ;
return i t −>second < m _ a s s o c i a t i v i t y ;

}

/ * *
* p r i n t f u n c t i o n
* /

v i r t u a l void pr int () const
{
}

p r i v a t e :
/ * *
* cache a s s o c i a t i v i t y
* /

unsigned int m _ a s s o c i a t i v i t y ;

/ * *
* data s t r u c t u r e s : may and may max s e t s
* /

std : : map<Address , unsigned int> m_maySet ;
s td : : map<Address , unsigned int> m_mayMaxSet ;

} ;

/ * *
* P e r s i s t e n c e A n a l y s i s Set , C o n f l i c t Counting Per Element
* /

c l a s s Pers is tenceSetConf l ic tWithAge : public P e r s i s t e n c e S e t {
public :

/ * *
* Cons t ruc t new empty p e r s i s t e n c e s e t
* /

Pers is tenceSetConf l ic tWithAge (unsigned int a s s o c i a t i v i t y = 0)
: m _ a s s o c i a t i v i t y (a s s o c i a t i v i t y)

{
}

/ * *
* D e s t r u c t i t
* /

v i r t u a l ~Pers is tenceSetConf l ic tWithAge ()
{
}

/ * *
* Crea t e a new empty s e t f o r g iven a s s o c i a t i v i t y
* /

v i r t u a l P e r s i s t e n c e S e t * c r e a t e (unsigned int a s s o c i a t i v i t y) const
{

return new Pers is tenceSetConf l ic tWithAge (a s s o c i a t i v i t y) ;
}

/ * *
* Clone a s e t , needed f o r implementa t ion
* /

v i r t u a l P e r s i s t e n c e S e t * clone () const
{

/ * *
* c r e a t e e x a c t copy
* /

Pers is tenceSetConfl ic tWithAge *newSet = new Pers is tenceSetConf l ic tWithAge () ;
*newSet = * t h i s ;
return newSet ;

}

/ * *
* update f u n c t i o n , update t h e s e t f o r g iven a c c e s s , non− d e s t r u c t i v e
* /

v i r t u a l P e r s i s t e n c e S e t *update (Address memoryBlock) const
{

/ * *
* i n s e r t e l ement i n t o c o n f l i c t s s e t
* /

Pers is tenceSetConfl ic tWithAge *newSet = s t a t i c _ c a s t <Pers is tenceSetConf l ic tWithAge *> (clone ()) ;
for (s td : : map<Address , s td : : pair <unsigned int , P e r s i s t e n c e S e t C o n f l i c t S e t > >: : i t e r a t o r

132

A.1 Synthetic Benchmarking

i t = newSet−>m_conf l ic t s . begin () ;
i t != newSet−>m_conf l ic t s . end () ; ++ i t) {

/ * *
* update a l l s e t s not f o r t h i s e l ement
* /

i f (i t −> f i r s t != memoryBlock) {
P e r s i s t e n c e S e t C o n f l i c t S e t * newConfl ictSet

= s t a t i c _ c a s t <P e r s i s t e n c e S e t C o n f l i c t S e t *>(i t −>second . second . update (memoryBlock)) ;
i f (i t −>second . f i r s t < m _ a s s o c i a t i v i t y)

++(i t −>second . f i r s t) ;
i t −>second . second = * newConfl ictSet ;
d e l e t e newConfl ictSet ;

}
}

/ * *
* i n i t s e t with only t h i s e l ement f o r t h i s e l ement
* /

P e r s i s t e n c e S e t C o n f l i c t S e t newConf (m _ a s s o c i a t i v i t y) ;
P e r s i s t e n c e S e t C o n f l i c t S e t * filledNewConf

= s t a t i c _ c a s t <P e r s i s t e n c e S e t C o n f l i c t S e t *>(newConf . update (memoryBlock)) ;
newSet−>m_conf l ic t s . e rase (memoryBlock) ;
newSet−>m_conf l ic t s . i n s e r t (std : : make_pair (memoryBlock , std : : make_pair (0U, * filledNewConf))) ;
d e l e t e filledNewConf ;

/ * *
* be done , r e t u r n new s e t
* /

return newSet ;
}

/ * *
* j o i n f u n c t i o n , j o i n t h i s s e t with an o t h e r s e t , non− d e s t r u c t i v e
* /

v i r t u a l P e r s i s t e n c e S e t * j o i n (const P e r s i s t e n c e S e t * s e t) const
{

/ * *
* union o f e l e m e n t s in c o n f l i c t s s e t s
* /

Pers is tenceSetConfl ic tWithAge *newSet = s t a t i c _ c a s t <Pers is tenceSetConf l ic tWithAge *> (clone ()) ;
const Pers is tenceSetConf l ic tWithAge * _ s e t = s t a t i c _ c a s t <const Pers is tenceSetConf l ic tWithAge *>(s e t) ;

for (s td : : map<Address , s td : : pair <unsigned int , P e r s i s t e n c e S e t C o n f l i c t S e t > >: : c o n s t _ i t e r a t o r
i t = _set −>m_conf l ic t s . begin () ;
i t != _set −>m_conf l ic t s . end () ; ++ i t) {

/ * *
* j o i n i n d i v i d u a l s e t s
* /

std : : map<Address , s td : : pair <unsigned int , P e r s i s t e n c e S e t C o n f l i c t S e t > >: : i t e r a t o r itNew
= newSet−>m_conf l ic t s . f ind (i t −> f i r s t) ;

i f (itNew == newSet−>m_conf l ic t s . end ())
newSet−>m_conf l ic t s . i n s e r t (std : : make_pair (i t −> f i r s t , i t −>second)) ;

else {
P e r s i s t e n c e S e t C o n f l i c t S e t * newConfl ictSet

= s t a t i c _ c a s t <P e r s i s t e n c e S e t C o n f l i c t S e t *>(itNew−>second . second . j o i n (& i t −>second . second)) ;
i f (i t −>second . f i r s t > itNew−>second . f i r s t)

itNew−>second . f i r s t = i t −>second . f i r s t ;
itNew−>second . second = * newConfl ictSet ;
d e l e t e newConfl ictSet ;

}
}
return newSet ;

}

/ * *
* compare f u n c t i o n , needed f o r f i x e d p o i n t i t e r a t i o n
* /

v i r t u a l bool operator== (const P e r s i s t e n c e S e t &s e t) const
{

return m_conf l ic t s == s t a t i c _ c a s t <const Pers is tenceSetConf l ic tWithAge *>(& s e t)−> m_conf l ic t s ;
}

/ * *
* c l a s s i f i c a t i o n o f a a c c e s s : i s t h e a c c e s s p e r s i s t e n t ?
* /

v i r t u a l bool i s P e r s i s t e n t (Address memoryBlock) const
{

s td : : map<Address , s td : : pair <unsigned int , P e r s i s t e n c e S e t C o n f l i c t S e t > >: : c o n s t _ i t e r a t o r i t
= m_conf l ic t s . f ind (memoryBlock) ;

i f (i t == m_conf l ic t s . end ())
return t rue ;

133

A Source Code

return (i t −>second . f i r s t < m _ a s s o c i a t i v i t y) | | i t −>second . second . i s P e r s i s t e n t (memoryBlock) ;
}

/ * *
* p r i n t f u n c t i o n
* /

v i r t u a l void pr int () const
{

for (s td : : map<Address , s td : : pair <unsigned int , P e r s i s t e n c e S e t C o n f l i c t S e t > >: : c o n s t _ i t e r a t o r
i t = m_conf l ic t s . begin () ; i t != m_conf l ic t s . end () ; ++ i t) {

p r i n t f ("%u => max age %u " , i t −>second . f i r s t , i t −> f i r s t) ;
i t −>second . second . pr int () ;

}
}

p r i v a t e :
/ * *
* cache a s s o c i a t i v i t y
* /

unsigned int m _ a s s o c i a t i v i t y ;

/ * *
* data s t r u c t u r e : s e t o f s e t s o f c o n f l i c t s
* /

std : : map<Address , s td : : pair <unsigned int , P e r s i s t e n c e S e t C o n f l i c t S e t > > m_conf l ic t s ;
} ;

/ * *
* S t r u c t u r e t o d e s c r i b e one t e s t s e t u p
* /

c l a s s TestSetup {
public :

/ * *
* cache a s s o c i a t i v i t y
* /

unsigned int a s s o c i a t i v i t y ;

/ * *
* l o o p u n r o l l i n g
* /

unsigned int unrol l ing ;

/ * *
* number o f d i f f e r e n t a c c e s s e d memory b l o c k s i n s i d e t h e l o o p
* (both f o r t h e c ompl e t e l o o p and one i t e r a t i o n i t s e l f)
* /

unsigned int di f ferentAccessedBlocks ;

/ * *
* s u b s e t o f above memory b l o c k s a c c e s s e d b e f o r e t h e lubbed
* c o n t e x t i s reached , e . g . in t h e u n r o l l e d −1 i t e r a t i o n s
* /

unsigned int commonBlocksInPrefix ;

/ * *
* number o f a d d i t i o n a l d i f f e r e n t memory b l o c k s a c c e s s e d b e f o r e t h e lubbed
* c o n t e x t i s reached , e . g . in t h e u n r o l l e d −1 i t e r a t i o n s
* w i l l on ly be added randomly t o some i t e r a t i o n s
* /

unsigned int e x t r a B l o c k s I n P r e f i x ;

/ * *
* r e u s e : number o f b l o c k s t h a t a r e used t w i c e i n s i d e on l o o p
* /

unsigned int reusedBlocks ;

/ * *
* number o f p a r a l l e l p o s s i b l e c o n t r o l f l ow paths i n s i d e t h e l o o p
* i f d i f f e r e n t A c c e s s e d B l o c k s P r e f i x > 0 , we add one path in t h e u n r o l l e d i t e r a t i o n s
* on which t h e s e b l o c k s a r e a c c e s s e d
* /

unsigned int numberOfControlFlowPaths ;
} ;

/ * *
* number o f random v a r i a n t s we t r y per t e s t s e t u p
* /

const unsigned int randomVariants = 10000;

/ * *
* a n a l y z e one i t e r a t i o n o f t h e g iven t e s t s e t u p .

134

A.1 Synthetic Benchmarking

* we p a s s which i t e r a t i o n and t h e i n i t i a l p e r s i s t e n c e s e t t o use f o r t h e a n a l y s i s
* f i l l s two c o u n t e r s : c o u n t e r o f a c c e s s e d done + c o u n t e r o f as p e r s i s t e n t c l a s s i f i e d a c c e s s e s
* /

P e r s i s t e n c e S e t * a n a l y z e I t e r a t i o n (const TestSetup &t e s t
, unsigned int i t e r a t i o n , P e r s i s t e n c e S e t * s t a r t P e r s i s t e n c e S e t ,

unsigned int &accessesDone , unsigned int &a c c e s s e s P e r s i s t e n t)
{

/ * *
* v e c t o r o f a c c e s s e s per path
* /

s t a t i c std : : vector <std : : vector <Address> > accessesPerPath ;
s t a t i c unsigned int l a s t I t e r a t i o n = 0 ;

/ * *
* r e u s e t h e same s e q u e n c e i f lubbed c o n t e x t
* /

i f (l a s t I t e r a t i o n == i t e r a t i o n && i t e r a t i o n == t e s t . unro l l ing) {
/ * *
* keep r e s u l t s
* /

} else {
/ * *
* compute new r e s u l t s
* /

l a s t I t e r a t i o n = i t e r a t i o n ;
accessesPerPath . c l e a r () ;

}

i f (accessesPerPath . empty ()) {
/ * *
* r e s i z e v e c t o r
* /

accessesPerPath . r e s i z e (t e s t . numberOfControlFlowPaths) ;

/ * *
* two c a s e s : f o r t h e u n r o l l e d f i r s t i t e r a t i o n s and f o r t h e lubbed l a s t one
* /

unsigned int maxUsed = 0 ;
bool anyUsed = f a l s e ;
i f (i t e r a t i o n < t e s t . unro l l ing) {

/ * *
* d i s t r i b u t e a c c e s s e s ove r wanted number o f c o n t r o l − f l ow paths
* /

for (unsigned int a c c e ss = 0 ; a c c e ss < t e s t . commonBlocksInPrefix ; ++a c c e s s) {
accessesPerPath [randomNumber () % t e s t . numberOfControlFlowPaths] . push_back (a c c e s s) ;
maxUsed = a c ce s s ;
anyUsed = true ;

}

/ * *
* add some b l o c k s t o some i t e r a t i o n s
* /

for (unsigned int a c c e ss = t e s t . d i f ferentAccessedBlocks ;
a c c e ss < t e s t . d i f ferentAccessedBlocks + t e s t . e x t r a B l o c k s I n P r e f i x ; ++ac c e s s) {

unsigned int randomValue1 = randomNumber () ;
unsigned int randomValue2 = randomNumber () ;
i f ((randomValue1 % 2) == 0)

accessesPerPath [randomValue2 % t e s t . numberOfControlFlowPaths] . push_back (a c c e s s) ;
}

} else {
/ * *
* d i s t r i b u t e a c c e s s e s ove r wanted number o f c o n t r o l − f l ow paths
* /

for (unsigned int a c c es s = 0 ; a c c es s < t e s t . d i f fe rentAccessedBlocks ; ++a c c e s s) {
accessesPerPath [randomNumber () % t e s t . numberOfControlFlowPaths] . push_back (a c c e s s) ;
maxUsed = a c ce s s ;
anyUsed = true ;

}
}

/ * *
* add reuse , i f any common e l e m e n t s used
* /

i f (anyUsed)
for (unsigned int reuse = 0 ; reuse < t e s t . reusedBlocks ; ++reuse)

accessesPerPath [randomNumber () % t e s t . numberOfControlFlowPaths] . push_back (randomNumber ()
% (maxUsed + 1)) ;

}

/ * *
* s i m u l a t e t h e pa ths and j o i n t h e r e s u l t s

135

A Source Code

* /
P e r s i s t e n c e S e t * r e s u l t P e r s i s t e n c e S e t = 0 ;
for (unsigned int path = 0 ; path < t e s t . numberOfControlFlowPaths ; ++path) {

/ * *
* s t a r t with i n i t i a l s e t
* /

P e r s i s t e n c e S e t * s e t = s t a r t P e r s i s t e n c e S e t −>clone () ;

/ * *
* s i m u l a t e a c c e s s e s
* /

const std : : vector <Address> &a c c e s s e s = accessesPerPath [path] ;
for (s i z e _ t i = 0 ; i < a c c e s s e s . s i z e () ; ++ i) {

/ * *
* remember a c c e s s
* /

++accessesDone ;

/ * *
* c l a s s i f y a c c e s s , i f p e r s i s t e n t remember
* /

i f (set −> i s P e r s i s t e n t (a c c e s s e s [i]))
++ a c c e s s e s P e r s i s t e n t ;

/ * *
* update p e r s i s t e n c e s e t
* /

P e r s i s t e n c e S e t *newSet = set −>update (a c c e s s e s [i]) ;
d e l e t e s e t ;
s e t = newSet ;

}

/ * *
* compute j o i n
* /

i f (r e s u l t P e r s i s t e n c e S e t) {
P e r s i s t e n c e S e t *newSet = r e s u l t P e r s i s t e n c e S e t −>j o i n (s e t) ;
d e l e t e s e t ;
d e l e t e r e s u l t P e r s i s t e n c e S e t ;
r e s u l t P e r s i s t e n c e S e t = newSet ;

} else {
r e s u l t P e r s i s t e n c e S e t = s e t ;

}
}

/ * *
* r e t u r n new r e s u l t s e t
* /

return r e s u l t P e r s i s t e n c e S e t ;
}

/ * *
* run a l l t e s t s e t u p s f o r chosen p e r s i s t e n c e a n a l y s i s
* /

void runTests (const std : : vector <TestSetup > &testSetups , const P e r s i s t e n c e S e t * i n i t i a l S e t)
{

/ * *
* run a l l t e s t s e t u p s
* /

for (unsigned int i = 0 ; i < t e s t S e t u p s . s i z e () ; ++ i) {
/ * *
* i n i t random g e n e r a t o r
* we want random sequence , but f o r any s c e n a r i o / a n a l y s i s t h e same one
* /

initRandomSeed () ;

/ * *
* c h o s e one s e t u p
* /

const TestSetup &t e s t = t e s t S e t u p s [i] ;

/ * *
* a c c e s s e s pre f i x e d p o i n t r e a c h e d in a l l ana lyzed rounds
* /

unsigned int to ta lAccessesPreF ixedPoint = 0 , t o t a l A c c e s s e s P r e F i x e d P o i n t P e r s i s t e n t = 0 ;

/ * *
* a c c e s s e s in one i t e r a t i o n a f t e r f i x e d p o i n t r e a c h e d in one round
* /

unsigned int t o t a l A c c e s s e s I n F i x e d P o i n t = 0 , t o t a l A c c e s s e s I n F i x e d P o i n t P e r s i s t e n t = 0 ;

136

A.1 Synthetic Benchmarking

/ * *
* we do m u l t i p l e runs f o r one setup , with d i f f e r e n t random d i s t r i b u t i o n s
* /

for (unsigned int v a r i a n t = 1 ; v a r i a n t < randomVariants ; ++v a r i a n t) {
/ * *
* a c c e s s e s pre f i x e d p o i n t r e a c h e d in a l l ana lyzed rounds
* /

unsigned int accessesPreFixedPoint = 0 , a c c e s s e s P r e F i x e d P o i n t P e r s i s t e n t = 0 ;

/ * *
* a c c e s s e s in one i t e r a t i o n a f t e r f i x e d p o i n t r e a c h e d in one round
* /

unsigned int accesses InF ixedPoint = 0 , a c c e s s e s I n F i x e d P o i n t P e r s i s t e n t = 0 ;

/ * *
* s t a r t with c l o n e o f i n i t i a l p e r s i s t e n c e s e t
* /

P e r s i s t e n c e S e t * p e r s i s t e n c e S e t = i n i t i a l S e t −>c r e a t e (t e s t . a s s o c i a t i v i t y) ;

/ * *
* run t h e a n a l y s i s f o r t h e u n r o l l e d i t e r a t i o n s
* /

unsigned int i t e r a t i o n = 1 ;
for (; i t e r a t i o n < t e s t . unro l l ing ; ++ i t e r a t i o n) {

/ * *
* ana lyzed one i t e r a t i o n , remember t h e a n a l y s i s r e s u l t
* /

P e r s i s t e n c e S e t * s e t A f t e r I t e r a t i o n = a n a l y z e I t e r a t i o n (t e s t , i t e r a t i o n
, p e r s i s t e n c e S e t , accessesPreFixedPoint
, a c c e s s e s P r e F i x e d P o i n t P e r s i s t e n t) ;

d e l e t e p e r s i s t e n c e S e t ;
p e r s i s t e n c e S e t = s e t A f t e r I t e r a t i o n ;

}

/ * *
* run f i x e d p o i n t i t e r a t i o n on lubbed c o n t e x t
* /

while (t rue) {
/ * *
* a n a l y z e on i t e r a t i o n
* /

unsigned int a c c e s s e s = 0 , a c c e s s e s P e r s i s t e n t = 0 ;
P e r s i s t e n c e S e t * s e t A f t e r I t e r a t i o n = a n a l y z e I t e r a t i o n (t e s t , i t e r a t i o n

, p e r s i s t e n c e S e t , accesses , a c c e s s e s P e r s i s t e n t) ;

/ * *
* j o i n with s t a r t
* /

P e r s i s t e n c e S e t * f i n a l S e t = s e t A f t e r I t e r a t i o n −>j o i n (p e r s i s t e n c e S e t) ;
d e l e t e s e t A f t e r I t e r a t i o n ;

/ * *
* f i x e d p o i n t r e a c h e d ?
* /

i f (* f i n a l S e t == * p e r s i s t e n c e S e t) {
accesses InF ixedPoint = a c c e s s e s ;
a c c e s s e s I n F i x e d P o i n t P e r s i s t e n t = a c c e s s e s P e r s i s t e n t ;
d e l e t e f i n a l S e t ;
d e l e t e p e r s i s t e n c e S e t ;
break ;

}

/ * *
* e l s e : r e i t e r a t e
* /

d e l e t e p e r s i s t e n c e S e t ;
p e r s i s t e n c e S e t = f i n a l S e t ;

}

/ * *
* g l o b a l s t a t s
* /

to ta lAccessesPreF ixedPoint += accessesPreFixedPoint ;
t o t a l A c c e s s e s P r e F i x e d P o i n t P e r s i s t e n t += a c c e s s e s P r e F i x e d P o i n t P e r s i s t e n t ;
t o t a l A c c e s s e s I n F i x e d P o i n t += accesses InF ixedPoint ;
t o t a l A c c e s s e s I n F i x e d P o i n t P e r s i s t e n t += a c c e s s e s I n F i x e d P o i n t P e r s i s t e n t ;

}

/ * *
* output s t a t s
* /

137

A Source Code

p r i n t f (" scenar io%u & %u & %u & %0.2 f\\%%"
, i + 1 , to ta lAccessesPreF ixedPoint
, t o t a l A c c e s s e s P r e F i x e d P o i n t P e r s i s t e n t
, 100 * ((double) t o t a l A c c e s s e s P r e F i x e d P o i n t P e r s i s t e n t / (double) to ta lAccessesPreF ixedPoint)) ;

p r i n t f (" && %u & %u & %0.2 f\\%% \\\\\n"
, t o t a l A c c e s s e s I n F i x e d P o i n t
, t o t a l A c c e s s e s I n F i x e d P o i n t P e r s i s t e n t
, 100 * ((double) t o t a l A c c e s s e s I n F i x e d P o i n t P e r s i s t e n t / (double) t o t a l A c c e s s e s I n F i x e d P o i n t)) ;

}

p r i n t f (" \n") ;
}

int main ()
{

/ * *
* f i r s t : c o n s t r u c t d i f f e r e n t t e s t s e t t i n g s
* /

TestSetup tes tSe tup ;
std : : vector <TestSetup > t e s t S e t u p s ;

/ * *
* u n r o l l i n g == 2 , 2 ways , 2 d i f f e r e n t e l e m e n t s a c c e s s e d , 2 p o s s i b l e c o n t r o l − f l ow paths
* /

t e s tSe tup . a s s o c i a t i v i t y = 2 ;
te s tSe tup . unro l l ing = 2 ;
tes tSe tup . d i f ferentAccessedBlocks = 2 ;
tes tSe tup . commonBlocksInPrefix = 2 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 0 ;
te s tSe tup . numberOfControlFlowPaths = 2 ;
tes tSe tup . reusedBlocks = 0 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

/ * *
* u n r o l l i n g == 8 , 2 ways , 3 d i f f e r e n t e l e m e n t s a c c e s s e d , 3 p o s s i b l e c o n t r o l − f l ow paths
* /

t e s tSe tup . a s s o c i a t i v i t y = 2 ;
te s tSe tup . unro l l ing = 8 ;
tes tSe tup . d i f ferentAccessedBlocks = 3 ;
tes tSe tup . commonBlocksInPrefix = 3 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 0 ;
te s tSe tup . numberOfControlFlowPaths = 3 ;
tes tSe tup . reusedBlocks = 0 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

/ * *
* u n r o l l i n g == 2 , 2 ways , 2 d i f f e r e n t e l e m e n t s a c c e s s e d , 2 p o s s i b l e c o n t r o l − f l ow paths
* 1 e x t r a e l ement f o r t h e u n r o l l e d f i r s t i t e r a t i o n
* /

t e s tSe tup . a s s o c i a t i v i t y = 2 ;
te s tSe tup . unro l l ing = 2 ;
tes tSe tup . d i f ferentAccessedBlocks = 2 ;
tes tSe tup . commonBlocksInPrefix = 2 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 1 ;
te s tSe tup . numberOfControlFlowPaths = 2 ;
tes tSe tup . reusedBlocks = 0 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

/ * *
* u n r o l l i n g == 8 , 4 ways , 4 d i f f e r e n t e l e m e n t s a c c e s s e d , 4 p o s s i b l e c o n t r o l − f l ow paths
* 2 e x t r a e l ement f o r t h e u n r o l l e d f i r s t i t e r a t i o n
* /

t e s tSe tup . a s s o c i a t i v i t y = 4 ;
te s tSe tup . unro l l ing = 8 ;
tes tSe tup . d i f ferentAccessedBlocks = 4 ;
tes tSe tup . commonBlocksInPrefix = 4 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 2 ;
te s tSe tup . numberOfControlFlowPaths = 4 ;
tes tSe tup . reusedBlocks = 0 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

/ * *
* u n r o l l i n g == 8 , 8 ways , 8 d i f f e r e n t e l e m e n t s a c c e s s e d , 4 p o s s i b l e c o n t r o l − f l ow paths
* 8 e x t r a e l ement f o r t h e u n r o l l e d f i r s t i t e r a t i o n , only 4 o f 8 a c c e s s e s from lubed c o n t e x t
* /

t e s tSe tup . a s s o c i a t i v i t y = 8 ;
te s tSe tup . unro l l ing = 8 ;
tes tSe tup . d i f ferentAccessedBlocks = 8 ;
tes tSe tup . commonBlocksInPrefix = 4 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 4 ;

138

A.1 Synthetic Benchmarking

t e s tSe tup . numberOfControlFlowPaths = 4 ;
tes tSe tup . reusedBlocks = 0 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

/ * *
* u n r o l l i n g == 16 , 8 ways , 8 d i f f e r e n t e l e m e n t s a c c e s s e d , 8 p o s s i b l e c o n t r o l − f l ow paths
* 16 e x t r a e l ement f o r t h e u n r o l l e d f i r s t i t e r a t i o n , no e l e m e n t s o f f i x e d p o i n t a c c e s s e d during u n r o l l i n g
* /

t e s tSe tup . a s s o c i a t i v i t y = 8 ;
te s tSe tup . unro l l ing = 16;
tes tSe tup . d i f ferentAccessedBlocks = 8 ;
tes tSe tup . commonBlocksInPrefix = 0 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 16;
te s tSe tup . numberOfControlFlowPaths = 8 ;
tes tSe tup . reusedBlocks = 0 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

/ * *
* u n r o l l i n g == 8 , 8 ways , 8 d i f f e r e n t e l e m e n t s a c c e s s e d , 4 p o s s i b l e c o n t r o l − f l ow paths
* 8 e x t r a e l ement f o r t h e u n r o l l e d f i r s t i t e r a t i o n , only 4 o f 8 a c c e s s e s from lubed c o n t e x t
* /

t e s tSe tup . a s s o c i a t i v i t y = 8 ;
te s tSe tup . unro l l ing = 8 ;
tes tSe tup . d i f ferentAccessedBlocks = 8 ;
tes tSe tup . commonBlocksInPrefix = 6 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 8 ;
te s tSe tup . numberOfControlFlowPaths = 4 ;
tes tSe tup . reusedBlocks = 0 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

/ * *
* u n r o l l i n g == 8 , 4 ways , 4 d i f f e r e n t e l e m e n t s a c c e s s e d , 4 p o s s i b l e c o n t r o l − f l ow paths
* 2 e x t r a e l ement f o r t h e u n r o l l e d f i r s t i t e r a t i o n
* /

t e s tSe tup . a s s o c i a t i v i t y = 4 ;
te s tSe tup . unro l l ing = 8 ;
tes tSe tup . d i f ferentAccessedBlocks = 4 ;
tes tSe tup . commonBlocksInPrefix = 4 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 2 ;
te s tSe tup . numberOfControlFlowPaths = 4 ;
tes tSe tup . reusedBlocks = 1 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

/ * *
* u n r o l l i n g == 8 , 8 ways , 8 d i f f e r e n t e l e m e n t s a c c e s s e d , 4 p o s s i b l e c o n t r o l − f l ow paths
* 8 e x t r a e l ement f o r t h e u n r o l l e d f i r s t i t e r a t i o n , only 4 o f 8 a c c e s s e s from lubed c o n t e x t
* /

t e s tSe tup . a s s o c i a t i v i t y = 8 ;
te s tSe tup . unro l l ing = 8 ;
tes tSe tup . d i f ferentAccessedBlocks = 8 ;
tes tSe tup . commonBlocksInPrefix = 4 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 8 ;
te s tSe tup . numberOfControlFlowPaths = 4 ;
tes tSe tup . reusedBlocks = 2 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

/ * *
* u n r o l l i n g == 16 , 8 ways , 8 d i f f e r e n t e l e m e n t s a c c e s s e d , 8 p o s s i b l e c o n t r o l − f l ow paths
* 16 e x t r a e l ement f o r t h e u n r o l l e d f i r s t i t e r a t i o n , no e l e m e n t s o f f i x e d p o i n t a c c e s s e d during u n r o l l i n g
* /

t e s tSe tup . a s s o c i a t i v i t y = 8 ;
te s tSe tup . unro l l ing = 16;
tes tSe tup . d i f ferentAccessedBlocks = 8 ;
tes tSe tup . commonBlocksInPrefix = 0 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 16;
te s tSe tup . numberOfControlFlowPaths = 8 ;
tes tSe tup . reusedBlocks = 4 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

/ * *
* u n r o l l i n g == 8 , 8 ways , 8 d i f f e r e n t e l e m e n t s a c c e s s e d , 4 p o s s i b l e c o n t r o l − f l ow paths
* 8 e x t r a e l ement f o r t h e u n r o l l e d f i r s t i t e r a t i o n , only 4 o f 8 a c c e s s e s from lubed c o n t e x t
* /

t e s tSe tup . a s s o c i a t i v i t y = 8 ;
te s tSe tup . unro l l ing = 8 ;
tes tSe tup . d i f ferentAccessedBlocks = 8 ;
tes tSe tup . commonBlocksInPrefix = 6 ;
te s tSe tup . e x t r a B l o c k s I n P r e f i x = 8 ;
te s tSe tup . numberOfControlFlowPaths = 4 ;
tes tSe tup . reusedBlocks = 6 ;
t e s t S e t u p s . push_back (tes tSe tup) ;

139

A Source Code

/ * *
* run t e s t s f o r t h e c o n f l i c t count ing p e r s i s t e n c e per s e t
* /

p r i n t f (" C o n f l i c t Counting Per Set \n") ;
P e r s i s t e n c e S e t C o n f l i c t S e t c o n f l i c t S e t P e r s i s t e n c e ;
runTests (tes tSetups , &c o n f l i c t S e t P e r s i s t e n c e) ;

/ * *
* run t e s t s f o r t h e c o n f l i c t count ing p e r s i s t e n c e per e l ement
* /

p r i n t f (" C o n f l i c t Counting Per Element\n") ;
Pers i s tenceSe tConf l i c tE lement c o n f l i c t E l e m e n t P e r s i s t e n c e ;
runTests (tes tSetups , &c o n f l i c t E l e m e n t P e r s i s t e n c e) ;

/ * *
* run t e s t s f o r t h e may based p e r s i s t e n c e
* /

p r i n t f ("May Based \n") ;
PersistenceSetMayBased mayBasedPersistence ;
runTests (tes tSetups , &mayBasedPersistence) ;

/ * *
* run t e s t s f o r t h e c o n f l i c t s per e l ement with aging
* /

p r i n t f (" C o n f l i c t Counting Per Element With Aging\n") ;
Pers i s tenceSetConfl ic tWithAge conf l i c tWithAgingPers i s tence ;
runTests (tes tSetups , &conf l i c tWithAgingPers i s tence) ;

/ * *
* be done
* /

return 0 ;
}

A.2 Evaluation Examples

Synthetic Examples for ARM7

Loop with if-then-else construct depending on a condition not known statically
that will be persistent:

/ / not known c o n d i t i o n
vo l a t i l e int x ;

/ / t e s t program , l o o p with s t a t i c a l l y
/ / not de te rmined c o n t r o l f l ow
int main (void)
{

vo l a t i l e int t ;

while (t) {
i f (x % 2 == 1)

t += x * 2 ;
else

x += x * 3 ;

140

A.2 Evaluation Examples

}

return t ;
}

Loop with switch construct depending on a condition not known statically that
leads to evictions:

/ / a r ray t o a c c e s s , t o touch t h e same
/ / cache s e t m u l t i p l e t i m e s
vo l a t i l e int x [4 0 9 6] ;

/ / t e s t program , l o o p with s t a t i c a l l y
/ / not de te rmined c o n t r o l f l ow
int main (void)
{

vo l a t i l e int t ;

while (t) {
/ / not d e c i d a b l e s w i t c h
/ / not a l l pa ths same c o s t s
switch (++ t) {

case 2 :
t = x [0] ;
break ;

case 5 :
t = x [4 *6 4] ;
break ;

case 12:
t = x [4 *1 2 8] ;
break ;

case 42:
t = x [4 *1 9 2] ;
break ;

case 56:
t = x [4 *5 1 2] ;

141

A Source Code

++t ;
++t ;
break ;

default :
t = x [4 *2 5 6] ;
break ;

}
}

return t ;
}

Loop with if-then-else construct and a prefix only executed in first iteration that
leads to evictions:

/ / a r ray t o a c c e s s , t o touch t h e same
/ / cache s e t m u l t i p l e t i m e s
vo l a t i l e int x [4 0 9 6] ;

/ / t e s t program , l o o p with p r e f i x
/ / t h a t d i f f e r s from normal i t e r a t i o n s
int main (void)
{

vo l a t i l e int t ;
int f i r s t = 1 ;

while (t) {
/ / do something only in f i r s t round
/ / may e v i c t s t u f f
i f (f i r s t) {

t += x [4 *5 1 2] ;
t += x [4 *1 2 8] ;
t += x [4 *1 9 2] ;
t += x [4 *2 5 6] ;
t += x [4 *7 6 8] ;
f i r s t = 0 ;

}

/ / normal i t e r a t i o n

142

A.2 Evaluation Examples

/ / l i k e i f −then− e l s e example
i f (t % 2 == 1)

t += x [4*64] * 2 ;
else

x [0] += x [0] * 3 ;
}

return t ;
}

143

List of Theorems

2.1 Definition (Control-flow graph) 6

2.2 Definition (Path) . 6

2.3 Definition (Path to a node v) . 6

2.4 Definition (Path semantics) . 6

2.5 Definition (Collecting path semantics) 7

2.6 Definition (Sticky collecting semantics) 7

2.7 Definition (Abstract collecting path semantics) 8

2.8 Definition (Abstract sticky collecting semantics) 8

2.9 Definition (Local consistency) 9

2.10 Definition (Strongly adjoint) . 9

2.1 Theorem (Soundness of abstract sticky collecting semantics) . . 9

2.11 Definition (MFP, maximal fixed point solution) 10

3.1 Definition (Control-flow graph with memory references) 16

3.2 Definition (Control-flow graph with single memory references) 16

3.3 Definition (Concrete set state) 17

3.4 Definition (Concrete cache state) 17

3.5 Definition (Memory block in the cache state) 17

3.6 Definition (Set update) . 18

3.7 Definition (Cache update) . 18

145

List of Theorems

3.8 Definition (Concrete cache semantics) 19

3.9 Definition (Cache path semantics) 19

3.10 Definition (Abstract set state) 19

3.11 Definition (Abstract cache state) 19

3.12 Definition (Abstract update function) 19

3.13 Definition (Abstract cache semantics) 19

3.14 Definition (Abstract join function) 20

3.15 Definition (Sure Hit Classification) 21

3.16 Definition (Set Update and Join – Must Cache Analysis) 21

3.17 Definition (Sure Miss Classification) 23

3.18 Definition (Set Update and Join – May Cache Analysis) 23

4.1 Definition (Persistence) . 27

4.1 Theorem (Persistence) . 27

4.1 Proof (Persistence) . 28

4.2 Definition (Persistence Scope) 29

4.3 Definition (Scope-Aware Persistence) 31

4.2 Theorem (Scope-Aware Persistence) 31

4.2 Proof (Scope-Aware Persistence) 31

6.1 Definition (Abstract Set Domain – Set-Wise Conflict Counting) 43

6.2 Definition (Set Update and Join – Set-Wise Conflict Counting) . 43

6.3 Definition (Persistence – Set-Wise Conflict Counting) 44

6.4 Definition (Optimized Set Update and Join – Set-Wise Conflict
Counting) . 47

7.1 Definition (Abstract Set Domain – Element-Wise Conflict Count-
ing) . 55

146

List of Theorems

7.2 Definition (Set Update and Join – Element-Wise Conflict Counting) 55

7.3 Definition (Persistence – Element-Wise Conflict Counting) . . . 56

7.4 Definition (Optimized Set Update and Join – Element-Wise Conflict
Counting) . 61

8.1 Definition (Abstract Set Domain – May-Based Persistence) . . . 68

8.2 Definition (Set Update and Join – May-Based Persistence) . . . 68

8.3 Definition (Persistence – May-Based Persistence) 69

9.1 Definition (Abstract Set Domain – Age-Tracking Conflict Count-
ing) . 80

9.2 Definition (Set Update and Join – Age-Tracking Conflict Counting) 80

9.3 Definition (Persistence – Conflict Counting with Aging) 80

9.4 Definition (Optimized Set Update and Join – Age-Tracking Conflict
Counting) . 85

147

List of Figures

2.1 Abstract Interpretation . 10

3.1 Simplified processor and memory performance evolution over 20
years, as presented by Mahapatra et al. in [MV99]. 14

3.2 Memory hierarchy of the MPC755. 15
3.3 Program containing one loop which accesses the memory blocks a,

b and c. 20
3.4 Control-flow graph with single memory references for the program

from Figure 3.3. Nodes with a memory reference to a memory block
x ∈M are annotated with ref (x). 21

3.5 The update (Umust) and join (Jmust) functions of the must cache
analysis for an abstract cache set. 22

3.6 Must cache analysis for one round of the loop from Figure 3.3
starting with empty must cache. 22

3.7 The update (Umay) and join (Jmay) functions of the may cache analy-
sis for an abstract cache set. 23

3.8 May cache analysis for one round of the loop from Figure 3.3 start-
ing with empty may cache. 24

4.1 Loop with if-then-else construct either loading memory block a or
b depending on a condition not known statically. 25

4.2 Control-flow graph with single memory references for the program
from Figure 4.1. Nodes with a memory reference to a memory block
x ∈M are annotated with ref (x). 26

4.3 Must cache analysis for the loop inside the control-flow graph
from Figure 4.2 starting with empty must cache until fixed point is
reached. 26

4.4 May cache analysis for the loop inside the control-flow graph Fig-
ure 4.2 starting with empty may cache until fixed point is reached. 27

4.5 Program with two loops with if-then-else construct either loading
memory block a or b depending on a condition not known statically
and one load of a memory block c in between. 29

149

List of Figures

4.6 Control-flow graph with single memory references for the program
from Figure 4.5. Nodes with a memory reference to a memory block
x ∈M are annotated with ref (x). 30

4.7 Loop containing an input-dependent if-condition. 32
4.8 Loop handling messages. It loops over a buffer with messages and

selects which kind of message handling is required by the type of
the dynamic message. 33

4.9 Loop handling messages. It loops over a buffer with messages and
calls the matching message handler callback routine. 34

4.10 Loop handling errors. It loops over a buffer with dynamic events
and only executes the error handling if an error occurred. . . . 34

4.11 State machine update function. Typically called inside a loop, will
do state transition. 35

5.1 The update (Upers) and join (Jpers) functions of the persistence anal-
ysis of Ferdinand. 38

5.2 Fixed point iteration for the persistence analysis by Ferdinand for
the if-then-else loop example (Figure 4.1): The figure shows the
fixed point iteration without joins at the loop head like if the loop
would be infinitely unrolled. After three rounds, the fixed point is
reached. The memory references to the memory blocks a and b are
classified as persistent. 39

5.3 Loop with switch construct accessing memory blocks a, b or c de-
pending on a condition not known statically. 40

5.4 Fixed point iteration for the persistence analysis by Ferdinand for
the switch loop example (Figure 5.3): After three rounds, the fixed
point is reached. The memory references to the three memory
blocks a, b and c are classified as persistent. 40

6.1 Fixed point iteration for the conflict counting persistence analysis
for the if-then-else loop (Figure 4.1): The fixed point is reached
after two rounds. The memory references to a and b are classified
as persistent. 44

6.2 Fixed point iteration for the conflict counting persistence analysis
for the switch loop (Figure 5.3): After two rounds, the fixed point is
reached. None of the memory references to a, b and c is classified
as persistent. 45

6.3 Loop which accesses three memory blocks a, b and c mapping to
the same cache set. a is only accessed once in the first iteration. 48

150

List of Figures

6.4 Fixed point iteration for the conflict counting persistence analysis
for the example in Figure 6.3: After two rounds, the fixed point
is reached. The memory references to b and c are classified as not
persistent. 49

6.5 Loop which accesses three memory blocks a, b and c mapping to
the same cache set. a and b are possibly accessed twice. 49

6.6 Analysis for one round of the innerPersistenceLoop loop example
(Figure 6.5). The second memory references to neither a nor b are
classified as persistent. 50

6.7 Comparison of analysis precision for different synthetic benchmark
scenarios for the set-wise conflict counting analysis. 53

7.1 Fixed point iteration for the element-wise conflict counting persis-
tence analysis for the if-then-else loop example (Figure 4.1): After
three rounds, the fixed point is reached. The memory references to
a and b are classified as persistent. 57

7.2 Fixed point iteration for the element-wise conflict counting persis-
tence analysis for the switch loop example (Figure 5.3): After three
rounds, the fixed point is reached. None of the memory references
to a, b and c is classified as persistent. 58

7.3 Fixed point iteration for the element-wise conflict counting per-
sistence analysis for the example in Figure 6.3: After two rounds,
the fixed point is reached. The memory references to b and c are
classified as persistent. 62

7.4 Analysis for one round of the innerPersistenceLoop loop example
(Figure 6.5). The memory references to a and b are classified as
persistent. 63

7.5 Comparison of analyses precision for different synthetic benchmark
scenarios and persistence analyses. 65

8.1 Fixed point iteration for the may-based persistence analysis for the
if-then-else loop example (Figure 4.1): After three rounds, the fixed
point is reached. The memory references to a and b are classified as
persistent. 69

8.2 Fixed point iteration for the may-based persistence analysis for the
switch loop example (Figure 5.3): After four rounds, the fixed point
is reached. The memory references to a, b and c are not classified
as persistent. All three memory blocks might be evicted during the
loop. 71

151

List of Figures

8.3 Fixed point iteration for the may-based persistence analysis for the
example in Figure 6.3: After four rounds, the fixed point is reached.
The memory references to b and c are classified as not persistent. 74

8.4 Analysis for one round of the innerPersistenceLoop loop example
(Figure 6.5). The memory references to a and b are classified as
persistent. 75

8.5 Comparison of analyses precision for different synthetic benchmark
scenarios and persistence analyses. 77

9.1 Fixed point iteration for the age-tracking conflict counting persis-
tence analysis for the if-then-else loop example (Figure 4.1): After
four rounds, the fixed point is reached. The memory references to a
and b are classified as persistent. 81

9.2 Fixed point iteration for the age-tracking conflict counting persis-
tence analysis for the switch loop example (Figure 5.3): After four
rounds, the fixed point is reached. None of the memory references
to a, b and c are classified as persistent. 82

9.3 Fixed point iteration for the age-tracking conflict counting analysis
for the example in Figure 6.3: After two rounds, the fixed point is
reached. The memory references to b are classified as persistent. 86

9.4 Age-tracking conflict counting analysis for one round of the inner-
PersistenceLoop loop example (Figure 6.5). The memory references
to a and b are classified as persistent. 87

9.5 Comparison of analyses precision for different synthetic benchmark
scenarios and persistence analyses. 89

10.1 Components of the aiT framework and their interaction. 92
10.2 Small snippet of a prediction graph: Two subsequent basic blocks a

and b and their internal state graph created by the pipeline analy-
sis. 94

10.3 Comparison of WCET estimates for different ARM7 tests and analy-
sis settings, S1 is the reference with 100%. 105

10.4 Comparison of WCET estimates for different MPC5554 tests and
analysis settings, S1 is the reference with 100%. 108

10.5 Comparison of WCET estimates for different MPC755 tests and
analysis settings, S1 is the reference with 100%. 111

12.1 Loop which accesses three memory blocks a, b and c mapping to
the same cache set. b and c are always accessed twice inside their
if-then-else branch. 118

152

List of Figures

12.2 Loop which accesses two memory blocks a and b mapping to the
same cache set. b is only written, never read. 119

153

List of Tables

6.1 Benchmark results for the set-wise conflict counting analysis. . 54

7.1 Benchmark results for the element-wise conflict counting analysis. 64

8.1 Benchmark results for the may-based persistence analysis. . . . 76

9.1 Benchmark results for the age-tracking conflict counting persistence
analysis. 88

10.1 WCET in cycles and analysis runtime in minutes for the ARM7 with
setting S1. The left column contains our synthetic examples, the
right column the tests from the WCET benchmarks suite. . . . 103

10.2 WCET in cycles and analysis runtime in minutes for the ARM7
with setting S3 and the set-wise or age-tracking conflict counting
persistence analysis. 104

10.3 WCET in cycles and analysis runtime in minutes for the MPC5554
with settings S1 and S2. 106

10.4 WCET in cycles and analysis runtime in minutes for the MPC5554
with setting S3 and the set-wise or age-tracking conflict counting
persistence analysis. 107

10.5 WCET in cycles and analysis runtime in minutes for the MPC755
with settings S1 and S2. 109

10.6 WCET in cycles and analysis runtime in minutes for the MPC755
with setting S3 and the set-wise or age-tracking conflict counting
persistence analysis. 110

155

Bibliography

[AM95a] Martin Alt and Florian Martin. Generating Analyzers with PAG.
Technical report, 1995.

[AM95b] Martin Alt and Florian Martin. Generation of Efficient Interproce-
dural Analyzers with PAG. In Proceedings of SAS’95, Static Analysis
Symposium, volume 983, 1995.

[BBB+05] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco
Menichelli, and Mauro Olivieri. Mparm: Exploring the multi-
processor soc design space with systemc. J. VLSI Signal Process. Syst.,
41:169–182, September 2005.

[BC08] Clément Ballabriga and Hugues Casse. Improving the first-miss com-
putation in set-associative instruction caches. In Proceedings of the
2008 Euromicro Conference on Real-Time Systems, ECRTS ’08, pages
341–350, Washington, DC, USA, 2008. IEEE Computer Society.

[CC76] Patrick Cousot and Radhia Cousot. Static Determination of Dynamic
Properties of Programs. In Proceedings of the Second International
Symposium on Programming, Dunod, Paris, France, 1976.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, pages 238–252, 1977.

[CCF+05] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. The astrÉe ana-
lyzer. In Programming Languages and Systems, Proceedings of the 14th
European Symposium on Programming, volume 3444 of Lecture Notes in
Computer Science, pages 21–30. Springer, 2005.

[CFG+10] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel
Grund, Claire Maiza, Jan Reineke, Benoît Triquet, and Reinhard Wil-
helm. Predictability considerations in the design of multi-core em-
bedded systems. In Proceedings of Embedded Real Time Software and
Systems, May 2010.

157

Bibliography

[CM07] Christoph Cullmann and Florian Martin. Data-Flow Based Detection
of Loop Bounds. In Workshop on Worst-Case Execution-Time Analysis
(WCET), July 2007.

[Cul11] Christoph Cullmann. Cache Persistence Analysis: A Novel Approach
- Theory and practice. In Proceedings of the ACM SIGPLAN/SIGBED
2011 conference on Languages, compilers, and tools for embedded systems,
LCTES 2011, Chicago, IL, USA, April 11-14, 2011, pages 121–130,
2011.

[Eng02] Jakob Engblom. Processor Pipelines and Static Worst-Case Execution-
Time Analysis. PhD thesis, Uppsala University, 2002.

[Erm03] Andreas Ermedahl. A Modular Tool Architecture for Worst-Case
Execution-Time Analysis. PhD thesis, Uppsala University, 2003.

[Fer97] Christian Ferdinand. Cache Behavior Prediction for Real-Time Sys-
tems. PhD Thesis, Universität des Saarlandes, 1997.

[FHL+01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm. Reliable and precise WCET
determination for a real-life processor. In Conference on Embedded
Software (EMSOFT), volume 2211 of LNCS, 2001.

[FMC+07] Christian Ferdinand, Florian Martin, Christoph Cullmann, Marc
Schlickling, Ingmar Stein, Stephan Thesing, and Reinhold Heckmann.
New Developments in WCET Analysis. In T. Reps, M. Sagiv, and J.
Bauer, editors, Program Analysis and Compilation, Theory and Practice:
Essays dedicated to Reinhard Wilhelm, volume 4444 of LNCS, pages
12–52. Springer Verlag, 2007.

[FMWA96] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin
Alt. Cache behavior prediction by abstract interpretation. In Science
of Computer Programming, volume 1145, pages 52–66. Springer, 1996.

[FW99] Christian Ferdinand and Reinhard Wilhelm. Efficient and precise
cache behavior prediction for real-time systems. Real-Time Systems,
17(2-3):131–181, 1999.

[GBEL10] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper.
The Mälardalen WCET benchmarks – past, present and future. pages
137–147, Brussels, Belgium, July 2010. OCG.

158

Bibliography

[GCH11] Gernot Gebhard, Christoph Cullmann, and Reinhold Heckmann. Soft-
ware structure and WCET predictability. In Philipp Lucas, Lothar
Thiele, Benoit Triquet, Theo Ungerer, and Reinhard Wilhelm, editors,
Bringing Theory to Practice: Predictability and Performance in Embedded
Systems, volume 18 of OpenAccess Series in Informatics (OASIcs), pages
1–10, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[Geb10] Gernot Gebhard. Timing anomalies reloaded. In Björn Lisper, editor,
Proceedings of 10th International Workshop on Worst-Case Execution
Time (WCET) Analysis, pages 5–15. Austrian Computer Society, July
2010.

[GLYY12] Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. WCET analysis with
MRU caches: Challenging LRU for predictability. In Proceedings of the
2012 IEEE 18th Real Time and Embedded Technology and Applications
Symposium, RTAS ’12, pages 55–64, Washington, DC, USA, 2012. IEEE
Computer Society.

[GR10a] Daniel Grund and Jan Reineke. Precise and efficient FIFO-
replacement analysis based on static phase detection. In Proceedings
of the 22nd Euromicro Conference on Real-Time Systems (ECRTS ’10),
pages 155–164, July 2010.

[GR10b] Daniel Grund and Jan Reineke. Toward precise PLRU cache analysis.
In Björn Lisper, editor, Proceedings of 10th International Workshop on
Worst-Case Execution Time (WCET) Analysis, pages 28–39. Austrian
Computer Society, July 2010.

[Gru12] Daniel Grund. Static Cache Analysis for Real-Time Systems – LRU, FIFO,
PLRU. PhD thesis, Saarland University, 2012.

[Hai86] I. J. Haikala. Program Behavior in Memory Hierarchies. PhD Thesis,
Technical Report A-1986-2, CS Department, University of Helsinki,
1986.

[HAM+99] Christopher A. Healy, Robert D. Arnold, Frank Mueller, Marion G.
Harmon, and David B. Whalley. Bounding pipeline and instruction
cache performance. IEEE Trans. Comput., 48:53–70, January 1999.

[HJR11] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. Scope-Aware
Data Cache Analysis for WCET Estimation. In Proceedings of the 17th
IEEE Real-Time and Embedded Technology and Applications Symposium,

159

Bibliography

RTAS 2011, Chicago, Illinois, USA, 11-14 April 2011, pages 203–212,
2011.

[HLTW03] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Rein-
hard Wilhelm. The influence of processor architecture on the design
and the results of WCET tools. Real-Time Systems, 91(7):1038–1054,
2003.

[HP96] John L. Hennessy and David A. Patterson. Computer architecture (2nd
ed.): a quantitative approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[HSR+00] C. Healy, M. Sjodin, V. Rustagi, D. Whalley, and R. van Engelen.
Supporting timing analysis by automatic bounding of loop iterations.
Real-Time Systems, pages 121–148, May 2000.

[HWH95] Christopher A. Healy, David B. Whalley, and Marion G. Harmon.
Integrating the timing analysis of pipelining and instruction caching.
In Real-Time Systems Symposium (RTSS), 1995.

[KU77] J.B. Kam and Jeffrey D. Ullman. Monotone Data Flow Analysis Frame-
works. Acta Informatica, 7(3), 1977.

[KWN+10] Daniel Kästner, Stephan Wilhelm, Stefana Nenova, Patrick Cousot,
Radhia Cousot, Jérôme Feret, Antoine Miné, Laurent Mauborgne,
and Xavier Rival. Astrée: Proving the absence of runtime errors. In
Embedded Real Time Software and Systems - ERTSS 2010, 2010.

[LH03] R. Lougee-Heimer. The common optimization interface for operations
research: Promoting open-source software in the operations research
community. IBM J. Res. Dev., 47(1):57–66, 2003.

[LHP09] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. WCET analysis
of multi-level set-associative data caches. In Niklas Holsti, editor,
9th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,
Dagstuhl, Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany.

[LS99] Thomas Lundqvist and Per Stenström. Timing anomalies in dynam-
ically scheduled microprocessors. In Real-Time Systems Symposium
(RTSS), December 1999.

160

Bibliography

[LTH02] Marc Langenbach, Stephan Thesing, and Reinhold Heckmann.
Pipeline modeling for timing analysis. In Proceedings of the 9th Interna-
tional Symposium on Static Analysis, SAS ’02, pages 294–309, London,
UK, 2002. Springer-Verlag.

[LYGY10] Mingsong Lv, Wang Yi, Nan Guan, and Ge Yu. Combining abstract
interpretation with model checking for timing analysis of multicore
software. In Real-Time Systems Symposium (RTSS), pages 339–349,
2010.

[Mat06] Niklas Matthies. Präzise Bestimmung längster Programmpfade an-
hand von Zustandsgraphen unter Berücksichtigung von Schleifen-
Nebenbedingungen. Master’s thesis, Universität des Saarlandes,
February 2006.

[MAWF98] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdi-
nand. Analysis of loops. In Kai Koskimies, editor, Compiler Construc-
tion, volume 1383 of Lecture Notes in Computer Science, pages 80–94.
Springer Berlin / Heidelberg, 1998. 10.1007/BFb0026424.

[Mue95] Frank Mueller. Static cache simulation and its applications. PhD thesis,
Tallahassee, FL, USA, 1995. UMI Order No. GAX95-02820.

[Mue00] Frank Mueller. Timing analysis for instruction caches. Real-Time Syst.,
18:217–247, May 2000.

[MV99] Nihar R. Mahapatra and Balakrishna Venkatrao. The processor-
memory bottleneck: Problems and solutions. Crossroads - Computer
architecture Crossroads Homepage archive, 5(3es), Spring 1999.

[MWH94] Frank Mueller, David B. Whalley, and Marion Harmon. Predicting
instruction cache behavior. In ACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems, 1994.

[Nag12] Kartik Nagar. Cache Analysis for Multi-level Data Caches. Master’s
thesis, Indian Institute of Science, June 2012.

[PPE+08] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, and Alexandru Andrei.
Timing analysis of the flexray communication protocol. Real-Time
Systems, 39:205–235, 2008. 10.1007/s11241-007-9040-3.

[Rei08] Jan Reineke. Caches in WCET Analysis. PhD thesis, Universität des
Saarlandes, November 2008.

161

Bibliography

[RG08] Jan Reineke and Daniel Grund. Relative competitive analysis of cache
replacement policies. In LCTES ’08: Proceedings of the 2008 ACM
SIGPLAN-SIGBED conference on Languages, compilers, and tools for
embedded systems, pages 51–60, New York, NY, USA, June 2008. ACM.

[RGBW07] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm.
Timing predictability of cache replacement policies. Real-Time Systems,
37(2):99–122, November 2007.

[RS09] Jan Reineke and Rathijit Sen. Sound and efficient WCET analysis in
presence of timing anomalies. In Workshop on Worst-Case Execution-
Time Analysis (WCET), 2009.

[RWT+06] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia
Polian, Jochen Eisinger, and Bernd Becker. A definition and classifica-
tion of timing anomalies. In Workshop on Worst-Case Execution-Time
Analysis (WCET), July 2006.

[Sch03] Jörn Schneider. Combined Schedulability and WCET Analysis for Real-
Time Operating Systems. PhD thesis, Universität des Saarlandes, 2003.

[Sic97] Martin Sicks. Adreßbestimmung zur Vorhersage des Verhaltens von
Daten-Caches. Diplomarbeit, Universität des Saarlandes, Fachbereich
14, 1997.

[SLH+05] Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jégu, Guil-
laume Borios, and Reinhold Heckmann. Computing the worst case
execution time of an avionics program by abstract interpretation.
In Proceedings of the 5th Intl Workshop on Worst-Case Execution Time
(WCET) Analysis, pages 21–24, 2005.

[Smi82] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473–
530, 1982.

[SP81] Micha Sharir and Amir Pnueli. Two Approaches to Interprocedural
Data Flow Analysis. In Steven S. Muchnick and Neil D. Jones, editors,
Program Flow Analysis: Theory and Applications, chapter 7. Prentice-
Hall, 1981.

[TFW00] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast
and precise WCET prediction by separated cache and path analyses.
Real-Time Systems, 18(2/3):157–179, May 2000.

162

Bibliography

[The00] Henrik Theiling. Extracting safe and precise control flow from bi-
naries. In Proceedings of the 7th Conference on Real-Time Computing
Systems and Applications, Cheju Island, South Korea, 2000.

[The02] Henrik Theiling. Control Flow Graphs For Real-Time Systems Analysis.
PhD thesis, Universität des Saarlandes, 2002.

[The04] Stephan Thesing. Safe and Precise WCET Determinations by Abstract In-
terpretation of Pipeline Models. PhD thesis, Universität des Saarlandes,
2004.

[THW94] Ken Tindell, H. Hanssmon, and Andy J. Wellings. Analysing real-time
communications: Controller area network (can). In IEEE Real-Time
Systems Symposium, pages 259–263, 1994.

[TSH+03] Stephan Thesing, Jean Souyris, Reinhold Heckmann, Famantanantsoa
Randimbivololona, Marc Langenbach, Reinhard Wilhelm, and Chris-
tian Ferdinand. An abstract-interpretation-based timing validation of
hard real-time avionics software systems. In Dependable Systems and
Networks (DSN), June 2003.

[WGR+09] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling,
Markus Pister, and Christian Ferdinand. Memory hierarchies,
pipelines, and buses for future architectures in time-critical embed-
ded systems. IEEE Transactions on CAD of Integrated Circuits and
Systems, 28(7):966–978, July 2009.

[WLP+10] Reinhard Wilhelm, Philipp Lucas, Oleg Parshin, Lili Tan, and Björn
Wachter. Improving the precision of WCET analysis by input con-
straints and model-derived flow constraints. In Samarjit Chakraborty
and Jörg Eberspächer, editors, Advances in Real-Time Systems, LNCS.
Springer-Verlag, 2010.

163

Index

Symbols
A-way set-associative 15

A
abstract cache semantics 19
abstract collecting path semantics . 8
abstract interpretation 5
abstract sticky collecting semantics 8
abstract transformer 8
abstraction function 8
age-tracking conflict counting persis-

tence analysis80
associativity . 14

B
BTB . 97

C
cache path semantics 19
cache persistence analysis 2
callstring-approach 11
CAN . 33
capacity . 14
collecting path semantics 7
collecting semantics 6
collecting transformer 7
concrete cache semantics 19
concrete transformer 6
concrete update function 6
concretization function 8
conflicts . 43
constant-bounded effects 97
control-flow graph 5

control-flow graph with memory ref-
erences 16

control-flow graph with single mem-
ory references 16

D
direct mapped 15
DRAM . 13

E
element-wise conflict counting cache

persistence analysis 55

F
FIFO . 15, 97, 120
first-miss 2, 26, 43, 54
FLASH . 13
FlexRay . 33
fully associative 15
fully timing compositional 96

L
line size . 14
local consistency 9
locality . 13
LRU. .15

M
maximal fixed point solution 10
may cache analysis 23
may-based cache persistence analysis

68
meet over all paths solution 9
MFP . 10

165

Index

MOP . 9, 10
Motorola . 14
MPARM . 97
MPC755 . 13
MRU. .120
must cache analysis 21

N
non-compositional 97

P
path . 5
persistence . 26
persistence scope 29
persistent . 27
persistent for the scope 31
PLRU . 15, 120
PowerPC . 14
program analyzer generator 10
Pseudo-RoundRobin 97, 120

R
random . 15
relative miss-competitiveness . . . 120

S
set-wise conflict counting cache per-

sistence analysis 43, 50,
56

set-wise conflict-counting 55
spatial locality 13
sticky collecting semantics7
strongly adjoint functions 9
sure hit . 21
sure miss . 23

T
temporal locality 14

V
virtual inlining & virtual unrolling11

VIVU . 11

W
WCET . 1
worst case execution time 1
write-through 119

166

	Eidesstattliche Versicherung
	Zusammenfassung
	Abstract
	Extended Abstract
	Acknowledgements
	Introduction
	Motivation
	Thesis Structure & Contributions

	Abstract Interpretation
	Concrete Semantics
	Program Representation
	Program Semantics

	Abstract Semantics
	Definition of Abstraction
	Soundness

	Analysis Framework
	Summary

	Cache Memories & Cache Analysis
	Why Use Caches?
	Cache Memory Parameters
	Concrete Semantics
	Program Representation
	Cache Semantics

	Abstract Semantics
	Must & May Cache Analyses
	Must Cache Analysis
	May Cache Analysis

	Summary

	Cache Persistence Analysis
	Motivation
	Cache Persistence
	Application to Real-World Software
	Input Handling - Interface to the Physical World
	Message Handling - Inter-System Communication
	Error Handling - Catching Runtime Errors
	Data Dependent Algorithms - State Machine Code

	Summary

	Cache Persistence Analysis by Ferdinand
	Introduction of the Analysis
	Application to an Example
	Persistence Analysis Bug
	Counter-Example
	Evaluation

	Summary

	Set-Wise Conflict Counting Persistence Analysis
	Introduction of the Analysis
	Application to the Examples
	if-then-else Loop
	switch Loop

	Discussion of Analysis Properties
	Soundness
	Termination

	Analysis Space-Optimization
	Imprecision Scenarios
	Imprecision for unrolled loops
	Imprecision for inner-iteration persistence
	Proposed improvements

	Benchmarking
	Benchmark Scenarios
	Benchmark Results

	Summary

	Element-Wise Conflict Counting Persistence Analysis
	Introduction of the Analysis
	Application to the Examples
	if-then-else Loop
	switch Loop

	Discussion of Analysis Properties
	Soundness
	Termination

	Analysis Space-Optimization
	Precision Improvements
	Precision for unrolled loops
	Precision for inner-iteration persistence

	Benchmarking
	Summary

	May Analysis Based Cache Persistence Analysis
	Introduction of the Analysis
	Application to the Examples
	if-then-else Loop
	switch Loop

	Discussion of Analysis Properties
	Soundness
	Termination

	Precision Improvements
	Precision for unrolled loops
	Precision for inner-iteration persistence

	Benchmarking
	Summary

	Age-Tracking Conflict Counting Persistence Analysis
	Introduction of the Analysis
	Application to the Examples
	if-then-else Loop
	switch Loop

	Discussion of Analysis Properties
	Soundness
	Termination

	Analysis Space-Optimization
	Precision Improvements
	Precision for unrolled loops
	Precision for inner-iteration persistence

	Benchmarking
	Summary

	Practical Evaluation
	The aiT WCET Analyzer Framework
	Control-flow Reconstruction
	Loop & Value Analysis
	Cache & Pipeline Analysis
	Path Analysis
	Relevant Parts for Persistence Analysis

	Cache & Pipeline Analysis
	Path Analysis
	Selection of Architectures
	Classification of Architectures
	Relevance in Practice

	Test Selection & Hardware Setup
	ARM7 TDMI Tests
	Freescale MPC5554 Tests
	Freescale MPC755 Tests

	Test Setup
	Test Results
	Discussion of the Results
	ARM7 TDMI - Synthetic and WCET Benchmarks
	Freescale MPC5554 & MPC755 - Avionics Benchmarks

	Summary

	Related Work
	Other Cache Persistence Analyses
	First-Miss Analysis by Mueller
	Persistence Analysis by Huynh et al.
	Persistence Analysis by Kartik Nagar

	Application of Cache Persistence Analyses
	Persistence Scope Optimizations
	Application to Muli-Level Caches
	Application to Multi-Core Architectures

	Extensions & Future Work
	Using Must & May Analyses Information
	Useful Must Cache Analysis Information
	Useful May Cache Analysis Information

	Better Handling of Replacement Policies
	Exploiting Relations between Non-LRU and LRU Policies
	Cumulative Arguments for Non-LRU Policies

	Enhanced Persistence Scope Selection
	Write-Back Cache Analysis

	Conclusion
	Source Code
	Synthetic Benchmarking
	Evaluation Examples

	List of Theorems
	List of Figures
	List of Tables
	Bibliography
	Index

